
ИНФОРМАЦИОННО-УПРАВЛЯЮЩИЕ СИСТЕМЫ
РЕАЛЬНОГО ВРЕМЕНИ

Лекция 2:
Динамическое планирование вычислений

и оценка планируемости - 1

Кафедра АСВК,
Лаборатория Вычислительных Комплексов

Балашов В.В.

Fixed-Priority Scheduling (FPS)

 This is the most widely used approach

 Each task has a fixed, static, priority which is
computed pre-run-time

 The runnable tasks are executed in the order
determined by their priority

 In real-time systems, the “priority” of a task is

derived from its temporal requirements, not its
importance to the correct functioning of the system
or its integrity

Earliest Deadline First (EDF)

 The runnable tasks are executed in the order
determined by the absolute deadlines of the tasks

 The next task to run being the one with the
shortest (nearest) deadline

 Although it is usual to know the relative deadlines
of each task (e.g. 25ms after release), the absolute
deadlines are computed at run time and hence the
scheme is described as dynamic

FPS v EDF

 FPS is easier to implement as priorities are static

 EDF is dynamic and requires a more complex run-
time system which will have higher overhead

 It is easier to incorporate tasks without deadlines
into FPS; giving a task an arbitrary deadline is more
artificial

 It is easier to incorporate other factors into the
notion of priority than it is into the notion of deadline

FPS v EDF

 During overload situations

 FPS is more predictable; Low priority process miss
their deadlines first

 EDF is unpredictable; a domino effect can occur in
which a large number of processes miss deadlines

 But EDF gets more out of the processor!

Preemption
 With priority-based scheduling, a high-priority task may be

released during the execution of a lower priority one

 In a preemptive scheme, there will be an immediate switch
to the higher-priority task

 With non-preemption, the lower-priority task will be allowed
to complete before the other executes

 Preemptive schemes enable higher-priority tasks to be
more reactive, and hence they are preferred

Scheduling Characteristics

 Sufficient – pass the test will meet deadlines

 Necessary – fail the test will miss deadlines

 Exact – necessary and sufficient

 Sustainable – system stays schedulable if
conditions ‘improve’

Simple Task Model

 The application is assumed to consist of a fixed set of tasks

 All tasks are periodic, with known periods

 The tasks are completely independent of each other

 All system's overheads, context-switching times and so on
are ignored (i.e, assumed to have zero cost)

 All tasks have a deadline equal to their period (that is, each
task must complete before it is next released)

 All tasks have a fixed worst-case execution time

Standard Notation
B

C

D

I

N

P

R

T

U

Worst-case blocking time for the task (if applicable)

Worst-case computation time (WCET) of the task

Deadline of the task

The interference time of the task

Number of tasks in the system

Priority assigned to the task (if applicable)

Worst-case response time of the task

Minimum time between task releases, jobs, (task period)

The utilization of each task (equal to C/T)

Rate Monotonic Priority Assignment

 Each task is assigned a (unique) priority based on its
period; the shorter the period, the higher the priority

 i.e, for two tasks i and j,

 This assignment is optimal in the sense that if any task
set can be scheduled (using pre-emptive priority-based
scheduling) with a fixed-priority assignment scheme,
then the given task set can also be scheduled with a
rate monotonic assignment scheme

 Note, priority 1 is the lowest (least) priority

P jPiT jT i

Example Priority Assignment

Process Period, T Priority, P

a 25 5

b 60 3

c 42 4

d 105 1

e 75 2

Response Time Equation

j
ihpj

j

i

ii
C

T

R
CR

)(

Where hp(i) is the set of tasks with priority higher than task i

Solve by forming a recurrence relationship:

j
ihpj

j

n

i

i

n

i
C

T

w
Cw

)(

1

The set of values is monotonically non decreasing.

When the solution to the equation has been found;

must not be greater that (e.g. 0 or)

1 n

i

n

i
ww

,..,...,,, 210 n

iiii
wwww

0

i
w

i
R

i
C

Response Time Calculation Algorithm
for i in 1..N loop -- for each process in turn

n := 0

loop

calculate new

if then

exit value found

end if

if then

exit value not found

end if

n := n + 1

end loop

end loop

i

n

i
Cw :

1n

i
w

n

i

n

i
ww 1

n

ii
wR

i

n

i
Tw 1

Task Period ComputationTime Priority

T C P
a 7 3 3

b 12 3 2

c 20 5 1

Task Set A

3
a

R

6

63
7

6
3

63
7

3
3

3

2

1

0

b

b

b

b

R

w

w

w

173
12

14
3

7

14
5

143
12

11
3

7

11
5

113
12

5
3

7

5
5

5

3

2

1

0

c

c

c

c

w

w

w

w

20

203
12

20
3

7

20
5

203
12

17
3

7

17
5

5

4

c

c

c

R

w

w

Process Period ComputationTime Priority Response time

T C P R

a 80 40 1 80

b 40 10 2 15

c 20 5 3 5

Task Set B

 The combined utilization is 1.0

 This was above the utilization threshold for three tasks
(0.78), therefore it failed the test

 The response time analysis shows that the task set will
meet all its deadlines

Response Time Analysis

 Is sufficient and necessary (exact)

 If the task set passes the test they will meet
all their deadlines; if they fail the test then,
at run-time, a task will miss its deadline
(unless the computation time estimations
themselves turn out to be pessimistic)

Sporadic Tasks

 Sporadics tasks have a minimum inter-arrival time

 They also require D<T

 The response time algorithm for fixed priority
scheduling works perfectly for values of D less than
T as long as the stopping criteria becomes

 It also works perfectly well with any priority
ordering — hp(i) always gives the set of higher-

priority tasks

i

n

i
DW 1

Aperiodic Tasks

 These do not have minimum inter-arrival times

 Can run aperiodic tasks at a priority below the
priorities assigned to hard processes, therefore,
they cannot steal, in a pre-emptive system,
resources from the hard processes

 This does not provide adequate support to soft
tasks which will often miss their deadlines

 To improve the situation for soft tasks, a server can
be employed

Execution-time Servers

 A server:

 Has a capacity/budget of C that is available to its
client tasks (typically aperiodic tasks)

 When a client runs it uses up the budget

 The server has a replenishment policy

 If there is currently no budget then clients do not
run

 Hence it protects other tasks from excessive
aperiodic activity

Periodic Server (PS)

 Budget C

 Replenishment Period T, starting at say 0

 Client ready to run at time 0 (or T, 2T etc) runs
while budget available, is then suspended

 Budget ‘idles away’ if no clients

 Analyzed as a periodic task

Deferrable Server (DS)

 Budget C

 Period T – replenished every T time units (back to

C)

 For example 10ms every 50ms

 Anytime budget available clients can execute

 Client suspended when budget exhausted

 DS is referred to as bandwidth preserving
 Retain capacity as long as possible

 PS is not bandwidth preserving

Task Sets with D < T

 For D = T, Rate Monotonic priority ordering is
optimal

 For D < T, Deadline Monotonic priority
ordering is optimal

 Response time analysis is applicable “as is”
to task sets with D ≤ T

jiji
PPDD

Task Period Deadline ComputationTime Priority Response time

T D C P R

a 20 5 3 4 3

b 15 7 3 3 6

c 10 10 4 2 10

d 20 20 3 1 20

D < T Example Task Set

Proof that DMPO is Optimal

 Deadline monotonic priority ordering (DMPO) is
optimal if any task set, Q, that is schedulable by
priority scheme, W, is also schedulable by DMPO

 The proof of optimality of DMPO involves
transforming the priorities of Q (as assigned by W)

until the ordering is DMPO

 Each step of the transformation will preserve
schedulability

DMPO Proof Continued
 Let i and j be two tasks (with adjacent priorities) in Q

such that under W:

 Define scheme W’ to be identical to W except that tasks i
and j are swapped

Consider the schedulability of Q under W’

 All tasks with priorities greater than will be unaffected
by this change to lower-priority tasks

 All tasks with priorities lower than will be unaffected;
they will all experience the same interference from i and
j

 Task j, which was schedulable under W, now has a higher

priority, suffers less interference, and hence must be
schedulable under W’

jiji
DDPP

i
P

j
P

 All that is left is the need to show that task i, which has had
its priority lowered, is still schedulable

 Under W

 Hence task i only interferes once during the execution of j

 It follows that:

 It can be concluded that task i is schedulable after the
switch

 Priority scheme W’ can now be transformed to W" by
choosing two more tasks that are in the wrong order for
DMP and switching them

iiijjj
TDandDDDR ,

ijji
DDRR '

DMPO Proof Continued

СПАСИБО ЗА ВНИМАНИЕ

hbd@cs.msu.su

