
Development of system for mapping of an arbitrary 
number of OpenFlow tables to single OpenFlow

table switches in software-defined networks
Vladislav Korolev, Moscow State University, Moscow, Russia, vkorolev@lvk.cs.msu.su

Alexander Shalimov, Moscow State University, Moscow, Russia, ashalimov@lvk.cs.msu.su 

1. Gebert S. et al. Table visor: An emulation layer for multi-table open flow
switches //Software Defined Networks (EWSDN), 2015 Fourth European Workshop
on. – IEEE, 2015. – С. 117-118.
2. Geissler S. et al. Tablevisor 2.0: Towards full-featured, scalable and hardware-
independent multi table processing //Network Softwarization (NetSoft), 2017 IEEE
Conference on. – IEEE, 2017. – С. 1-8.
3. Reich J. et al. Modular sdn programming with pyretic //Technical Reprot of
USENIX. – 2013.
4. Nygren A. et al. OpenFlow Switch Specification, Version 1.3. 4 (Protocol version
0× 04), Mar. 27, 2014 //Open Networking Foundation.(Part 1 of 2). – С. 1-84.
5. The continued TableVisor project – JTableVisor:
https://github.com/lsinfo3/JTableVisor.

References

Software-defined networking is an approach

where the management level is separated from

the data transmission level. Now there is logically

one centralized controller, which takes control

over other devices. One way of the SDN

technology realization is OpenFlow. One of basic

factors of OpenFlow structure is existence of

Flow-tables where the rules applicable to the

processed packets are written down. As more

flow tables are on switches, as more functional a

network managed program can be. At the

moment full-fledged hardware OpenFlow

switches have not yet appeared. Currenly we

mostly have OpenFlow-enabled classical

switches with limited number of flow tables. Thus,

it becomes valuable to map arbitrary number of

flow tables to the switches with limited number of

them.

INTRODUCTION

Pyretic is high-level language of modular programming

for SDN, but for the considered task it is not applicable as

policies are static, without dynamic addition / removal of

rules and applications, in fact in other look allows to

process packets that is carried out by means of modular

and functional programming. This fact disturbs

transparency for the programmer and would force many

developers to learn highly specialized functional

language.

TableVisor represents the proxy server written in the

Java [5] language widespread and known to many

developers, has an opportunity to emulate the

switchboard with big functionality for rather small financial

sum in comparison with the physical switchboard having

necessary functionality. Also ensures functioning in one

system of devices of different producers. Directly does not

solve our problem, but uses useful approach of the proxy

server.

Problem

1. OpenFlow-enabled classical switches have

the small number of OpenFlow tables – one or

two usually.

2. Even during developing OpenFlow[4]

switches from scratch using network processors

developers get problems with implementation of

several OpenFlow tables. As more flow tables

requiers as more additional passes the packet

loops through network processor. This overall

reduces the total bandwidth of the device.

JUSTIFICATION OF RELEVANCE

The input parameters of the proposed algorithm: a set

of tables is given; we process them from right to left,

exactly from the last table to the first one. Every table has

a type, which depends on the last rule: drop the packet or

go to the next. These two types are D and G respectively.

Every time only two tables are considered: created on the

last step with the next one (on the first step, the last and

pre-last tables are considered). The type of the formed

table on each step coincides with type of the current table

(left of considered). If the type of the current table is D,

then the forming table is the association of considering

tables; if the type is G, then the forming one is the

association of considering ones plus the formed table,

which should be added down the forming table. When we

want to have a combination of two tables we look at

couples of rules: fix top rule of the left table and compare

to all rules from the right one from top to down, then fix

the second rule of the left table – compare with all from

right and so on. As a result, we will compare every rule

with all another rules; the order of a pass is set. Make

intersection the fields for comparison (match fields)

according to the name: if intersection is empty or there is

a crossing, but with equal values, the rule with association

of fields for comparison is added; if there are various

values of the respective fields in the crossing then the

new rule should not be formed.

At addition of the new rule the field of actions (action) will

be formed so: add the actions union of considering rules

taking into account that at nonempty intersection there will

be fields with value from the second rule in association. In

the final table priorities are placed from below - up

increase.

APPROACH TO THE DECISION

For carrying out experiments and a research of

the developed algorithm the program on C++ was

written. Input parameters are various txt files

containing tables of different configurations with

different sizes. These tables are created manually.

The configuration is a set of fields for comparison

and actions: actions can be intersected by different

rules and can be absolutely different. It means

arbitrary actions are considered. Besides, various

order of types of tables, for example, of DDGGDD,

GGDDDGG, GDGDGD, DGDG, GGGGDD,

DDDG, GDGGDDG was considered. The

correctness of work of the developed algorithm is

confirmed theoretically as there will be the rules

containing all possible scenarios of packet

processing in the final table. The final rule priority

corresponds to reality by the construction of final

table. Besides, the correctness of results was

manually confirmed on the considered 20 tests. In

all tests the final table was constructed correctly. It

is possible to notice that the number of rules of the

final table many times higher from the number of

rules in an original set of tables.

On the basis of a research it is possible to

conclude that at increase in total of rules from this

set of tables, there is an exponential explosion,

otherwise, more the more values the algorithm

should touch, the number of rules in the final table

increases quicker. There are several ways to

optimize algorithm. For example, it is possible to

remove of the repeating rules. It is worth noticing

that the number of rules in the final table depends

not only on the total number of rules at the

beginning, but also on the structure of these rules.

There are some situations when two rules have

many intersections in the name of fields. In that

case the probability of not adding the new rule to

the final table is greater.

EXPERIMENTAL EVALUATION

Work purpose

The purpose of this work is development of the

system of translating any set of OpenFlow tables

into single table in a general network device. The

system has to support the rules containing three

main fields: the field for comparison, the field of

actions, and a priority. Besides, the system

should support addition and removing of rules.

Problem definition

Problem definition is to develop, realize and

research an algorithm of translating any set of

OpenFlow tables into single table in a general

network.

ANALYSIS OF THE EXISTING DECISIONS

OpenFlow Switch

SDN with Pyretic

Table 1. Experiments

TableVisor Architecture

Tables quantity Overall rule 
quantity

Rule quantity after 
algorithm

3 20 (6, 6, 8) 307

5 20 (4, 4, 4, 4) 373

4 30 (5, 5, 6, 4) 652

3 40 (17, 13, 10) 2038

4 50 (4, 16, 15, 15) 7481

4 50 (15, 15, 16, 4) 7293

4 60 (20, 3, 4, 33) 7700

CONCLUSION
The developed algorithm of display of a set

OpenFlow tables in one can expand functionality of

TableVisor if it is introduced between OpenFlow the

controller and TableVisor the proxy server. The

algorithm was developed with acceptance of some

restrictions: consideration only write_action of

actions.

The following steps on improvement of an

algorithm are support of apply_action, conducting

testing on real data, integration into TableVisor and

an optimization of the rule workaround for better

performance of devices.

«Modern Network Technologies, MoNeTec- 2018»

https://github.com/lsinfo3/JTableVisor

