

Vasily Pashkov
pashkov@lvk.cs.msu.su

Lecture 2: OpenFlow Protocol

What is software defined
networking?

• Software-defined networking (SDN) is an approach to
computer networking that allows network
administrators to manage network services through
abstraction of lower-level functionality.
– Abstractions for three problems: constrained forwarding

model, distributed state, detailed configuration

• SDN is
– Directly programmable: network control is programmable

because it is decoupled from forwarding functions
– Agile: administrator can dynamically adjust network-wide

traffic flow to meet changing needs.
– Centrally managed: network intelligence is logically

centralized.
– Programmatically configured
– Open standards-based and vendor-neutral

Forwarding abstraction

• Control plane needs flexible forwarding model

– With behavior specified by control program
applications

• Use a generic “flow” concept that is inclusive and
forward based on flows.

• Historically the hardware’s capability for forwarding is
vendor dependent

– e.g. forwarding based on L2 address, L3 address

– This abstracts away forwarding hardware

– Flexibility and vendor-neutrality are both valuable

State Distribution Abstraction

• Shield control mechanisms from state distribution
while allowing access to the state
– Split global consensus-based distributed algorithms into

two independent components: a distributed (database)
system and a centralized algorithm.
• We know how to deal with both.

• Natural abstraction: global network view

• Implemented with a network operating system.

• Control (configuration) mechanism is now
abstracted as a function of the global view using API
– Control is now based on a centralized graph algorithm

instead of a distributed protocol.

Network Operating
System(NOS)

• NOS: a distributed system that creates and
maintains a network view

• Communicates with forwarding elements
– Get state information from forwarding

elements

– Communicates control directives to forwarding
elements
• Using forwarding abstraction

• NOS plus forwarding abstraction = SDN (v1)

Configuration abstraction

• Application should not configure each
individual network device.

• The NOS provides consistent global view of the
network

• Configuration is a function of the global view

• NOS eases the implementation of functionality

– Does not help specification of functionality

• Need a specification abstraction

Specification abstraction

• Give control programs an abstract view of
network
– Abstract view is a function of global view. The

abstract view could be just a giant switch
connecting all ports, or individual logical topology
for each application.

• Control program is abstract mapping
– Abstract configuration = Function (abstract view)

• Abstraction models should have just enough
detail to specify goals
– Don’t provide information needed to implement

goals.

Simple Example: Access
Control

Global

Network

View

Abstract

Network

Model

How

What
Source: Scott Shenker, UC Berkeley

Network OS

Global Network View

Abstract Network Model

Control Program

Network Virtualization

Software Defined Networks

Specifies
behavior

Compiles to
topology

Transmits
to switches

Source: Scott Shenker, UC Berkeley

What Does This Picture Mean?

• Write a simple program to configure a simple model
– Configuration is merely a way to specify what you want

• Examples
– ACLs: who can talk to who
– Isolation: who can hear my broadcasts
– Routing: only specify routing to the degree you care

• Some flows over satellite, others over landline

– TE: specify in terms of quality of service, not routes

• Virtualization layer “compiles” these requirements
– Produces suitable configuration of actual network

devices

• NOS then transmits these settings to physical boxes

Source: Scott Shenker, UC Berkeley

Million of lines
of source code

5400 RFCs Barrier to entry

Billions of gates Bloated Power Hungry

Many complex functions baked into the infrastructure
OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewalls, MPLS, redundant layers, …

Ossified networks today

 Openflow: Simplifying the control

Specialized Packet
Forwarding Hardware

Operating
System

Feature Feature

Routing, management, mobility management,
access control, VPNs, …

OpenFlow: a pragmatic
compromise

• + Speed, scale, fidelity of vendor hardware

• + Flexibility and control of software and
simulation

• Vendors don’t need to expose
implementation

• Leverages hardware inside most switches
today (ACL tables)

How does OpenFlow work?

13

Ethernet switch

Forwarding table:
12:12:12:12:12:12 port 1
3f:13:33:ef:ff:ff port 2

What sets the forwarding
Table in Ethernet?

Data Path (Hardware)

Control Path OpenFlow

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)

OpenFlow switch

OpenFlow controller

OpenFlow Client

Flow table

SSL

Port 1 Port 2 Port 3 Port 4

software

hardware

Openflow switch

• An Openflow switch (Ethernet switch) has an internal
flow table.
– If a packet matches an entry in the flow table, perform

the actions (e.g. forward to port 10) according to the flow
table.

– If a packet does not match any entry in the flow table.
Send it to the Openflow controller
• The controller will figure out what to do with such packet
• The controller will then respond to the switch, informing how to

handle such a packet so that the switch would know how to deal
with such packets next time.

• For each flow, ideally the controller will be queried once.

• Openflow defines the standard interface to add and
remove flow entries in the table.

Controller

PC

Hardware
Layer

Software
Layer

Flow Table

MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport

Action

OpenFlow Client

* * 5.6.7.8 * * * port 1

port 4 port 3 port 2 port 1

1.2.3.4 5.6.7.8

OpenFlow Example

Flow switching and routing

• Each individual field + meta data

• Wild Card aggregation

– E.g. IP-subnet: 192.168.*/24

Layer 4

OpenFlow Basics
Flow Table Entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

L4
sport

L4
dport

Rule Action Stats

1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
3. Send to normal processing pipeline
4. Modify Fields
5. Any extensions you add!

+ mask what fields to match

Packet + byte counters

VLAN
pcp

IP
ToS

Examples

Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* 00:1f:.. * * * * * * * port6

Flow Switching

port3

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

00:20.. 00:1f.. 0800 vlan1 1.2.3.4 5.6.7.8 4 17264 80 port6

Firewall

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * * * * 22 drop

Examples

Routing

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * * * * 5.6.7.8 * * * port6

VLAN Switching

*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Action

* * vlan1 * * * * *

port6,
port7,
port9

00:1f..

Centralized vs Distributed
Control

Centralized Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Distributed Control

OpenFlow
Switch

OpenFlow
Switch

OpenFlow
Switch

Controller

Controller

Controller

Flow Routing vs. Aggregation

Flow-Based

• Every flow is individually

set up by controller
• Exact-match flow entries
• Flow table contains one

entry per flow
• Good for fine grain

control, e.g. campus
networks

 Aggregated

• One flow entry covers large

groups of flows
• Wildcard flow entries
• Flow table contains one

entry per category of flows
• Good for large number of

flows, e.g. backbone

Reactive vs. Proactive
(pre-populated)

Reactive

• First packet of flow

triggers controller to insert
flow entries

• Efficient use of flow table
• Every flow incurs small

additional flow setup time
• If control connection lost,

switch has limited utility

Proactive

• Controller pre-populates

flow table in switch
• Zero additional flow setup

time
• Loss of control connection

does not disrupt traffic
• Essentially requires

aggregated (wildcard) rules

Openflow specifications

• From 1.0.0 to 1.5.0 (1.6 not public yet)

• Briefly introduce concepts in versions 1.0.0
to 1.2.0

Openflow 1.0 concepts

• Ports and Port queues

• Flow table

• Packet matching

• Actions and packet forwarding

• Messaging between controller and switch

Open Flow Protocol Messages

• Controller-to-switch: from the controller to
manage or inspect the switch state
– Features, config, modify state, read state, packet-

out, etc

• Asynchronous: send from switch without
controller soliciting
– Packet-in, flow removed/expired, port status, error,

etc

• Symmetric: symmetric messages without
solicitation in either direction
– Hello, Echo, etc.

Openflow 1.1 concepts

• Multiple flow tables

• Groups

• MPLS and VLAN tag support

• Virtual ports

• Controller connection failure

Pipeline processing (in 1.1)

• A switch can have multiple flow tables that are
matched in a pipeline fashion.

Per table packet processing

Groups

• Group table: entries and actions

– To refine flooding

– Support multicast

– As a base for rules that apply to multiple flows

1.2.0 concepts

• Extensible match support

• Extensible set_field packet-rewrite support

• IPv6

• Multiple controller enhancements

• Later versions of Openflow specification
supports more necessary functions.

Thanks for your attention!

Vasily Pashkov
pashkov@lvk.cs.msu.su

