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Abstract 

Recent measurements of local-area and wide-area trafic 
have shown that network trafic exhibits variability at a wide 
range of scales. In this papel; we examine a mechanism that 
gives rise to self-similar network trajfic and present some of 
its pe l fomnce  implications. The mechanism we study is 
the transfer offiles or messages whose size is drawn from a 
heavy-tailed distribution. 

First, we show that in a “realistic” clientherver network 
environment-i.e., one with bounded resources and cou- 
pling among trafic sources competing for resources-the 
degree to which j l e  sizes are heavy-tailed can directly de- 
termine the degree of trafic self-similarity at the link level. 
We show that this causal relationship is robust with respect 
to changes in network resources (bottleneck bandwidth and 
bufSer capacity), network topology, the injuence of cross- 
trafic, and the distribution of interarrival times. 

Second, we show that properties of the transport layer 
play an important role in preserving and modulating this 
relationship. In particulal; the reliable transmission and 
Jlow control mechanisms of TCP (Reno, Tahoe, or Vegas) 
serve to maintain the long-range dependency structure in- 
duced by heavy-tailed j l e  size distributions. In contrast, 
i fa  non-$ow-controlled and unreliable (UDP-based) trans- 
port protocol is used, the resulting trafic shows little self- 
similarity: although still bursty at short time scales, it has 
little long-range dependence. 

Third, we show performance implications of self- 
similarity as represented by pelfarmance measures includ- 
ing packet loss rate, retransmission rate, and queueing de- 
lay. Increased self-similarity, as expected, results in degra- 
dation of performance. Queueing delay, in particulal; 
exhibits a drastic increase with increasing self-similarity. 
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Throughput-related measures such as packet loss and re- 
transmission rate, howevel; increase only gradually with 
increasing trafic self-similarity as long as reliable, jlow- 
controlled transport protocol is used. 

1 Introduction 

Recent measurements of local-area and wide-area traf- 
fic [ 12,241 have shown that network traffic exhibits variabil- 
ity at a wide range of scales. Such scale-invariant variability 
is in strong contrast to traditional models of network traffic, 
which show variability at short time scales but are essen- 
tially smooth at large time scales; i.e., they lack long-range 
dependence. Since self-similarity is believed to have a sig- 
nificant impact on network performance, understanding the 
causes and effects of traffic self-similarity is an important 
problem. 

In this paper, we study a mechanism that induces self- 
similarity in network traffic. We show that self-similar traf- 
fic can arise from a simple, high-level property of the over- 
all system: the heavy-tailed distribution of file sizes being 
transferred over the network. We show that if the distribu- 
tion of file sizes is heavy-tailed-meaning that the distribu- 
tion behaves like a power law thus generating very large file 
transfers with nonnegligible probability-then the superpo- 
sition of many file transfers in a cliendserver network envi- 
ronment induces self-similar traffic and this causal mecha- 
nism is robust with respect to changes in network resources 
(bottleneck bandwidth and buffer capacity), topology, inter- 
ference from cross-traffic possessing dissimilar traffic char- 
acteristics, and changes in the distribution of file request 
interarrival times. Properties of the transporthetwork layer 
in the protocol stack are shown to play an important role in 
mediating this causal relationship. 

The mechanism we propose is motivated by the ON/OFF 
model [24]. The ON/OFF model shows that self-similarity 
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can arise in an idealized context-i.e., one with unbounded 
resources and independent traffic sources-as a result of ag- 
gregating a large number of 0/1 renewal processes whose 
ON or OFF periods are heavy-tailed. The success of this 
simple, elegant model in capturing the characteristics of 
measured traffic traces [24] is surprising given that it ig- 
nores nonlinearities arising from the interaction of traffic 
sources contending for network resources, which in real net- 
works, can be as complicated as the feedback congestion 
control algorithm of TCP Reno. To apply the framework 
of the ON/OFF model to real networks, it is necessary to 
understand whether the model’s limitations affect its use- 
fulness and how these limitations manifest themselves in 
practice. 

In this paper, we show that in a “realistic” clientherver 
network environment-i.e., one with bounded resources 
leading to the coupling of multiple traffic sources contend- 
ing for shared resources-the degree to which file sizes are 
heavy-tailed directly determines the degree of traffic self- 
similarity. Specifically, measuring self-similarity via the 
Hurst parameter H and file size distribution by its power- 
law exponent Q: (their definitions are given later), we show 
that there is a nearly linear relationship between H and Q: 

over a wide range of network conditions and when subject 
to the influence of the protocol stack. This mechanism gives 
a particularly simple explanation of why self-similar net- 
work traffic may be observed in many diverse contexts. 

We discuss a traffic shaping effect of TCP that helps ex- 
plain the modulating influence of the protocol stack. We 
find that the presence of self-similarity at the link layer de- 
pends on whether reliable and flow-controlled communica- 
tion is employed at the transport layer. In the absence of re- 
liability and flow control mechanisms such as when a UDP- 
based transport protocol is used, much of the self-similarity 
of the downstream traffic is destroyed when compared to 
the upstream traffic. The resulting traffic, while still bursty 
at short ranges, shows significantly less long-range corre- 
lation structure. In contrast, when TCP (Reno, Tahoe, or 
Vegas) is employed, the long-range dependence structure 
induced by heavy-tailed file size distributions is preserved 
and transferred to the link-layer, manifesting itself as scale- 
invariant burstiness. 

We conclude with a discussion of the effect of self- 
similarity on network performance. We find that in an UDP- 
based non-flow-controlled’ environment, as self-similarity 
is increased, performance declines drastically as measured 
by packet loss rate and mean queue length. If reliable 
communication via TCP is used, however, packet loss, re- 
transmission rate, and file transmission time decline grace- 
fully (roughly linearly) as a function of H .  The excep- 
tion is mean queue length, which shows the same superlin- 

lH-estimates and performance results when an open-loop flow control 
is active can be found in [17]. 

ear increase as in the unreliable non-flow-controlled case. 
This graceful decline in TCPs performance under self- 
similar loads comes at a cost: a disproportionate increase 
in the consumption of buffer space. The sensitive depen- 
dence of mean queue length on self-similarity is consis- 
tent with previous work [13] showing that queue length 
distribution decays more slowly for long-range dependent 
sources than for short-range dependent sources. The afore- 
mentioned traffic-shaping effect of flow-controlled, reliable 
transport shaping a large file transfer into an on-average 
“thin” packet train (stretching-in-time effect) suggests, in 
part, why the ON/OFF model has been so successful despite 
its limitations-a principal effect of interaction among traf- 
fic sources in an internetworked environment seems to lie in 
the generation of lengthy packet trains wherein the correla- 
tion structure inherent in heavy-tailed file size distributions 
is sufficiently preserved. 

The rest of this paper is organized as follows. In the 
next two sections, we discuss related work, the network 
model, and the simulation set-up. This is followed by the 
main section which explores the effect of file size distribu- 
tion on traffic self-similarity, including the role of the pro- 
tocol stack, heavy-tailed versus non-heavy-tailed interar- 
rival time distribution, resource variations, and traffic mix- 
ing. We conclude with a discussion of the effect of traf- 
fic self-similarity from a performance evaluation perspec- 
tive, showing its quantitative and qualitative effects with 
respect to performance measures when both the degree of 
self-similarity and network resources are varied. 

2 Related work 

Since the seminal study of Leland et al. [12] which set 
the groundwork for considering self-similar network traffic 
as an important modeling and performance evaluation prob- 
lem, a string of work has appeared dealing with various as- 
pects of traffic self-similarity [ l ,  2 ,7 ,9 ,  10, 13, 14, 19,241. 
The research avenues may be broadly classified into two 
categories. 

In the first category [7, 9, 10, 12, 19, 241, traffic traces 
from physical network measurements are employed to iden- 
tify the presence of scale-invariant burstiness, and mod- 
els are constructed capable of generating synthetic traffic 
with matching characteristics. These papers show that long- 
range dependence is an ubiquitous phenomenon encom- 
passing both local-area and wide-area network traffic. 

In the second category are papers that have evaluated the 
effect of self-similar traffic on idealized or simplified net- 
works [ l ,  2, 13, 141. They show that long-range depen- 
dent traffic is likely to degrade performance and a principal 
result is the observation that queue length distribution un- 
der self-similar traffic decays much more slowly than with 
short-range-dependent sources (e.g., Poisson). 
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Our work is an extension of the line of research in the 
first category where we investigate causal mechanisms that 
may be at play in real networks responsible for generating 
the self-similarity phenomena observed in diverse network- 
ing contexts. The relationship between file sizes and self- 
similar traffic was suggested by the work described in [7] 
which showed that self-similarity in World Wide Web traf- 
fic might arise due to the heavy-tailed distribution of file 
sizes present in the Web. 

An important question is whether file size distributions in 
practice are in fact typically heavy-tailed, and whether file 
size access patterns can be modeled as randomly sampling 

fic arriving at G2 from servers as upstream traffic and the 
traffic from G2 to GI as downstream traffic. 

s ,  

s ,  
c,, ::* 
Figure 1. Network configuration. 

from such distributions. Previous measurement-based stud- 
ies of file systems have recognized that file size distributions 
possess long tails, but they have not explicitly examined the 
tails for power-law behavior [21, 22, 15, 4, 201. In [7], it is 
shown that the size distribution of files found in the World 
Wide Web appears to be heavy-tailed with a approximately 
equal to 1, which stands in general agreement with mea- 
surements reported in [3]. In [6] ,  the authors show that the 
sizes of reads and writes to an NFS server appear to show 
power-law behavior. In [ 191, it was found that the upper tail 
of the distribution of data bytes in FI'P bursts was well fit to 
a Pareto distribution with 0.9 5 a 5 1.1. A general study 
of Unix file systems has found distributions that appear to 
be approximately power-law [ 1 11. 

3 Network model and simulation set-up 

3.1 Network model 

The network is given by a directed graph consisting 
of n nodes and m links. Each output link has a buffer, 
link bandwidth, and latency associated with it. A node vi 
(i = 1,2, . . . , n) is a server node if it has a probability den- 
sity function p i ( X )  where X 2 0 is a random variable de- 
noting file size. We will call p z ( X )  thejile size distribution 
of server vi. wi is a client node (it may at the same time 
be also a server) if it has two probability density functions 
h i ( X ) ,  d i (Y) ,  X E ( 1 , .  . . ,n}, Y E R+, where hi is used 
to select a server, and di is the interarrival time (or idle time 
distribution) which is used in determining the time of next 
request. In the context of reliable communication, if Tk is 
the time at which the k' th request by client vi was reliably 
serviced, the next request made by client vi is scheduled at 
time T k  + Y where Y has distribution di. Requests from 
individual clients are directed to servers randomly (inde- 
pendently and uniformly) over the set of servers. In un- 
reliable communication, this causal requirement is waived. 
A 2-server, 32-client network configuration with a bottle- 
neck link between gateways GI and G2 is shown in Fig- 
ure 1. This network configuration is used for most of the 
experiments reported below. We will refer to the total traf- 

A file is completely determined by its size X and it is 
split into [X /M1 packets where M is the maximum seg- 
ment size (1 kB for the results shown in the paper). The seg- 
ments are routed through a packet-switched internetwork 
with packets being dropped at bottleneck nodes in case of 
buffer overflow. The dynamical model is given by all clients 
independently placing file transfer requests to servers where 
each request is completely determined by the file size. 

3.2 Simulation set-up 

We have used the LBNL Network Simulator (ns) as our 
simulation environment [SI. Ns is an event-driven simulator 
derived from S. Keshav's REAL network simulator support- 
ing several flavors of TCP (in particular, TCP Reno's con- 
gestion control features-Slow Start, Congestion Avoid- 
ance, Fast RetransmitRecovery) and router scheduling al- 
gorithms. Although not production TCP code, we have 
found ns's emulation of TCP satisfactory for the purposes 
at hand. 

We have modified the distributed version of ns to model 
our interactive clientheiver environment. This entailed, 
among other things, implementing our clienvserver nodes 
as separate application layer agents. A UDP-like unreliable 
transport protocol was added to the existing protocol suite, 
and an aggressive opportunistic UDP-based agent was built 
to service file requests when using unreliable communica- 
tion. We also added a TCP Vegas module to complement 
the existing TCP Reno and Tahoe modules. 

Our simulation results were obtained from several hun- 
dred runs of ns . Each run executed for 10000 simulated 
seconds, logging traffic at 10 millisecond granularity. The 
result in each case is a time series of one million data points; 
using such extremely long series increases the reliability of 
statistical measurements of self-similarity. Although most 
of the runs reported here were done with a 2- serve^-132- 
client bottleneck configuration (Figure l), other configu- 
rations were tested including performance runs with the 
number of clients varying in the range 1-132. The bottle- 
neck link was varied from 1.5 Mbps up to OC-3 levels, and 
buffer sizes were varied in the range of lkB-128kB. Non- 
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Figure 2. TCP run. Throughput as a function of file size distribution and three aggregation levels. 
File size distributions constitute Pareto with a = 1.05,1.35,1.95, and exponential. 

bottleneck links were set at 10 Mbps and the latency of each 
link was set to 15ms. The maximum segment size was fixed 
at IkB for the runs reported here. For any reasonable as- 
signment to bandwidth, buffer size, mean file request size, 
and other system parameters, it was found that by either ad- 
justing the number of clients or the mean of the idle time 
distribution di appropriately, any intended level of network 
demand could be achieved. 

where 0 < a < 2. That is, the asymptotic shape of the dis- 
tribution follows a power law. One of the simplest heavy- 
tailed distributions is the Pareto distribution. The Pareto 
distribution is power-law over its entire range; its probabil- 
ity density function is given by 

p ( 5 )  = CYkax-a-l 

where a,  k > 0, and 2 2 k. Its distribution function has the 
form 

F ( 2 )  = P [ X  5 4 = 1 - (k/s)&. 

The parameter k represents the smallest possible value of 
the random variable. 

Heavy-tailed distributions have a number of properties 
that are qualitatively different from distributions more com- 
monly encountered such as the exponential or normal dis- 
tribution. If CY 2 2, the distribution has infinite variance; if 
a 5 1 then the distribution has also infinite mean. Thus, 
as a decreases, a large portion of the probability mass is 
present in the tail of the distribution. In practical terms, a 
random variable that follows a heavy-tailed distribution can 

4 File size distribution and traffic self- 
similarity 

4.1 Heavy-tailed distributions 

An important characteristic of our proposed mechanism 
for traffic self-similarity is that the sizes o f  files being trans- 
ferred are drawn from a heavy-tailed distribution. A distri- 
bution is heavy-tailed if 

P[X > x] - as x 4 CO 
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Figure 3. Hurst parameter estimates (TCP run): WS and Variance-Time for a = 1.05,1.35,1.65, and 
1.95. Base run (left), large bandwithllarge buffer (middle), large buffer (right) 

give rise to extremely large file size requests with nonnegli- 
gible probability. 

4.2 Effect of file size distribution 

First, we demonstrate our central point: the interactive 
transfer of files whose size distribution is heavy-tailed gen- 
erates self-similar traffic even when realistic network dy- 
namics, including network resource limitations and the in- 
teraction of traffic streams, are taken into account. 

Figure 2 shows graphically that our set-up is able to in- 
duce self-similar link traffic, the degree of scale-invariant 
burstiness being determined by the a parameter of the 
Pareto distribution. The plots show the time series of net- 
work traffic measured at the output port of the bottleneck 
link from gateway Gz to GI in Figure 1. This downstream 
trafic is measured in bytes per unit time where the aggre- 
gation level or time unit varies over five orders of magni- 
tude from lOms, looms, lsec, lOsec, to 100sec. Only the 
top three aggregation levels are shown in Figure 2; at the 
lower aggregation levels traffic patterns for differing a val- 
ues appear fairly similar to each other. For a close to 2, 
we observe a smoothing effect as the aggregation level is 
increased, indicating a weak dependency structure in the 
underlying time series. As a approaches 1, however, bursti- 
ness is preserved even at large time scales indicating that the 
lOms time series possesses long-range dependency. The last 
column depicts time series obtained by employing an expo- 
nential file size distribution at the application layer with the 
mean normalized so as to equal to that of the Pareto distri- 
butions. We observe that the aggregated time series between 
exponential and Pareto with a = 1.95 are statistically indis- 
tinguishable. 

A quantitative measure of self-similarity is obtained by 
using the Hurst parameter H which expresses the speed of 
decay of a time series' autocorrelation function. A time 

series with long-range dependence has an autocorrelation 
function of the form 

~ ( I c )  - IC-P as IC + 00 

where 0 < ,b < 1. The Hunt parameter is related to ,b via 

Hence, for long-range dependent time series, 1/2 < H < 1. 
As H + 1, the degree of long-range dependence increases. 
A test for long-range dependence in a time series can be 
reduced to the question of determining whether H is signif- 
icantly different from 1/2. 

In this paper, we use two methods for testing self- 
similarity.2 These methods are described more fully in 
[5, 231 and are the same methods used in [12]. The first 
method, the variance-time plot, is based on the slowly de- 
caying variance of a self-similar time series. The second 
method, the R/S  plot, uses the fact that for a self-similar 
data set, the rescaled range or RIS statistic grows accord- 
ing to a power law with exponent H as a function of the 
number of points included. Thus the plot of R / S  against 
this number on a log-log scale has a slope which is an esti- 
mate of H. Figure 3 shows H-estimates based on variance- 
time and R/S methods for three different network config- 
urations. Each plot shows H as a function of the Pareto 
distribution parameter for a = 1.05,1.15,1.25,1.35,1.65 
and 1.95. 

Figure 3 (left) shows the results for the baseline TCP 
Reno case in which network bandwidth and buffer capac- 
ity are both somewhat limited (1.5 Mb/s and 6kB) result- 
ing in a x 4% packet drop rate for the most bursty case 

2A third method based on the periodogram was also used; however 
this method is believed to be sensitive to low frequency components in the 
series, which led in our case to a wide spread in the estimates; it is omitted 
here. 
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Figure 4. Relative frequency of weighted file size distributions obtained from three 10000 second TCP 
runs-Pareto with a = 1.05 (left), with (II = 1.95 (middle), and exponential distribution (right). 

(a = 1.05). The plot shows that the Hurst parameter es- 
timates vary with file size distribution in a roughly linear 
manner. The H = ( 3 - a ) / 2  line shows the values of H that 
would be predicted by the ON/OFF model in an idealized 
case corresponding to a fractional Gaussian noise process. 
Although their overall trends are similar (nearly coinciding 
at cy = 1.65), the slope of the simulated system with re- 
source limitations and reliable transport layer running TCP 
Reno's congestion control is consistently less than -1, with 
an offset below the idealized line for cy close to 1 and above 
the line for cy close to 2, Figure 3 (middle) shows similar 
results for the case in which there is no significant limita- 
tion in bandwidth (155 Mb/s) leading to zero packet loss. 
There is noticeably more spread among the estimates which 
we believe to be the result of more variability in the traffic 
patterns since traffic is less constrained by bandwidth limi- 
tations. Figure 3 (right) shows the results when bandwidth 
is somewhat limited, as in the baseline case, but buffer sizes 
at the switch are made large (64kB). Again, a roughly linear 
relationship between the heavy-tailedness of file size distri- 
bution (a) and self-similarity of link traffic ( H )  is observed. 

To verify that this relationship is not due to specific char- 
acteristics of the TCP Reno protocol, we repeated our base- 
line simulations using TCP Tahoe and TCP Vegas. The re- 
sults (presented in [ 181) were essentially the same as in the 
TCP Reno baseline case which indicates that specific dif- 
ferences in implementation of TCP s flow control between 
Reno, Tahoe, and Vega9 do not significantly affect the re- 
sulting traffic self-similarity. 

Figure 4 shows the relative file size distribution of 
clientkerver conversations over the 10000 second simula- 
tion time interval, organized into file size buckets (or bins). 
Each file transfer request is weighted by its size in bytes 
before normalizing to yield the relative frequency. The left 
figure shows that the Pareto distribution with cy = 1.05 gen- 
erates file size requests which are dominated by file sizes 
above 64kB. On the other hand, the file sizes for Pareto with 

a = 1.95 and the exponential distribution (middle, right) 
are concentrated on file sizes below 64kB, and in spite of 
fine differences, their aggregated behavior (cf. Figure 2) is 
similar with respect to self-similarity. 

We note that for the exponential distribution and the 
Pareto distribution with a = 1.95, the shape of the relative 
frequency graph for the weighted case is analogous to the 
non-weighted (i.e., one which purely reflects the frequency 
of file size requests) case. However, in the case of Pareto 
with cy = 1.05, the shapes are "reversed" in the sense that 
the total number of requests are concentrated on small file 
sizes even though the few large file transfers end up domi- 
nating the 10000 second simulation run. 

4.3 Effect of idle time distribution 

All the runs thus far were obtained with an exponential 
idle time distribution with mean 600 msec. Figure 5 (left) 
and (middle) show the H-estimates of the baseline config- 
uration when the idle time distribution is exponential with 
mean 0.6 sec and Pareto with cy = 1.05 and mean 1.197 
sec. The file size distribution remained Pareto. As the H- 
estimates show, the effect of a Pareto-modeled heavy-tailed 
idle time distribution is to boost long-range dependence 
when cy is close to 2, decreasing in effect as a approaches 
1. 

This phenomenon may be explained as follows. For file 
size distributions with a close to 2,  the correlation structure 
introduced by heavy-tailed idle time is significant relative 
to the contribution of the file size distribution, thus increas- 
ing the degree of self-similarity as reflected by H .  As cy 

approaches 1, however, the tail weight of the file size dis- 
tribution becomes the dominating term, and the contribu- 
tion of idle time with respect to increasing dependency is 
insignificant in comparison. 

Figure 5 (right) shows the Hurst parameter estimates 
when the file size distribution was exponential with mean 
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Figure 5. TCP run: Exponential idle time vs. Pareto idle time with Pareto file size distributions- 
Variance-Time (left), WS (middle); Pareto idle times with exponential file size distribution (right) 

4. lkB, but the idle time distribution was Pareto with a rang- 
ing between 1.05-1.95 and mean 1.197 sec at a = 1.05. 
As the idle time distribution is made more heavy-tailed 
(a += l),  a positive trend in the H-estimates is clearly dis- 
cernible. However, the overall level of H-values is signifi- 
cantly reduced from the case when the file size distribution 
was Pareto indicating that the file size distribution is the 
dominating factor in determining the self-similar character- 
istics of network traffic. 

4.5 Effect of network topology 

Figure 7 shows a variation in network topology from the 
base configuration (Figure 1) in which the 32 clients are 
organized in a caterpillar graph with 4 articulation points 
(gateways Gs, Gq. Gg, Gs), each containing 8 clients. The 
traffic volume intensifies as we progress from gateway Ge 
to G2 due to the increased multiplexing effect. Link traffic 

4.4 Effect of traffic mixing 

Figure 6 shows the effect of making one of the file size 
distributions heavy-tailed (a = 1.05) and the other one ex- 
ponential in the 2-server system. Downstream throughput 
is plotted against time where the aggregation level is 100 
seconds. The left plot shows the case when both servers 
are Pareto with a = 1.05. The right plot shows the case 
when both servers have exponential file size distributions. 
The middle plot is the combined case, where one server has 
a Pareto distribution with a = 1.05 and the other server 
has an exponential distribution. Figure 6 shows that the 
mixed case is less "bursty" than the pure Pareto case but 
more bursty than the pure exponential case. Performance 
indicators such as packet drop rate and retransmission rate 
(not shown here) exhibit a smooth linear degradation when 
transiting from one extreme to the other. That is, the pres- 
ence of less bursty cross-traffic does not drastically smooth 
out the more bursty one, nor does the latter swallow up the 
smooth traffic entirely. Traffic mixing was applied to all 
combination pairs for a = 1.05,1.35,1.65,1.95 keeping 
one server fixed at a = 1.05. The H-values for the three 
cases shown are 0.86,O.g 1, and 0.54, respectively. 

Figure 7. Variation in network topology. 

was measured at the bottleneck link between GB and G2 
which was set at 1.544Mbps. All other links were set at 
10Mbps. The Hurst parameter estimates for various values 
of a (not shown here) indicate that for both V-T and RIS, the 
degree of self-similarity measured across both topologies is 
almost the same. 

4.6 Effect of the protocol stack 

In this subsection, we explore the role of the protocol 
stack with respect to its effect on traffic self-similarity. We 
concentrate on the functionality of the transport layer and its 
modulating influence on the characteristics of downstream 
traffic via its two end-to-end mechanisms: reliable packet 
transport and congestion control. 
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Figure 6. Traffic mixing effect for two file size distributions Pareto a = 1.05 and exponential at 100 
second aggregation level: Both servers are Pareto (left); one server is Pareto, the other one is 
exponential (middle); both servers are exponential (right). 

4.6.1 Unreliable communication and erosion of long- 
rangedependency 

Figure 8 shows the Hurst parameter estimates for a 32- 
clienU2-server system with exponential idle time dis- 
tribution and Pareto file size distributions for a = 
1.05,1.35,1.65, and 1.95. In these simulations, commu- 
nication is unreliable; they use a UDP-based transport pro- 
tocol which is driven by an extremely greedy application 
whose output rate, upon receiving a client request, was es- 
sentially only bounded by the local physical link bandwidth. 
(The flow-controlled case is described in [17].) The H- 
estimates show that as source burstiness is increased, the 
estimated Hurst parameter of the down-stream traffic de- 
creases relative to its value in the upstream traffic. 

Another interesting point is the already low Hurst esti- 
mate of the up-stream traffic for Pareto a = 1.05. We be- 
lieve this is due to a stretching-in-space effect: given an 
exponential idle time distribution, the extremely greedy na- 
ture of the UDP-based application encourages traffic to be 
maximally stretched out in space, and stretching-in-time is 
achieved only for very large file size requests. The concen- 
tration of its mass on a shorter time interval decreases the 
dependency structure at lower time scales, making the traf- 
fic less self-similar. 

4.6.2 Stretching-in-time 

In contrast to the unreliable non-flow-controlled communi- 
cation case, reliable communication and flow-control, to- 
gether, act to preserve the long-range dependence of heavy- 
tailed file size distributions, facilitating its transfer and ul- 
timate realization as self-similar link traffic. Efficiency 
dictates that file transmissions, including retransmission of 
lost packets, complete in a short amount of time. Subject 
to the limitations of congestion control in achieving opti- 
mally efficient transfer [16], this has the effect of stretch- 
ing out a large file or message transfer in time into an on- 

average, thin packet train. This also suggests why the lin- 
ear ON/OFF model may have been successful in modeling 
the output characteristics of a complicated nonlinear sys- 
tem which real networks undoubtedly are. In some sense, 
the effect of the unaccounted-for nonlinearity is reflected 
back as a stretching-in-time effect, thus conforming to the 
model's original suppositions. The effect of bandwidth and 
buffer capacity on traffic self-similarity are omitted here for 
brevity. They can be found in the full paper [ 181. 

4.7 Network performance 

In this section, we present a brief summary of perfor- 
mance results evaluating the effects of self-similarity. A 
comprehensive study of the performance implications of 
self-similarity including quality-of-service (QoS) issues, re- 
source trade-offs, and performance comparisons between 
TCP Reno, Tahoe, and Vegas can be found in [ 171. 

4.7.1 Performance evaluation under reliable commu- 
nication 

We evaluated network performance when both traffic self- 
similarity (a of Pareto file size distribution) and network 
resources (bottleneck bandwidth and buffer capacity) were 
varied. Figure 9 (left) shows packet loss rate as a function 
of a for buffer sizes in the range 2kB-128kB. We observe 
a gradual increase in the packet loss rate as a approaches 
1, the flatness of the curve increasing as buffer capacity is 
decreased. The latter is due to an overextension of buffer 
capacity whereby the burstiness associated with a = 1.95 
traffic is already high enough to cause significant packet 
drops. The added burstiness associated with highly self- 
similar traffic (a = 1.05) bears little effect. The same grad- 
ual behavior is also observed for packet retransmission and 
throughput (not shown here). 

Figure 9 (middle) shows mean queue length as a function 
of a for the same buffer range. In contrast to packet loss 
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rate, queueing delay exhibits a superlinear dependence on 
self-similarity when buffer capacity is large. This is consis- 
tent with work [13, 141 showing that queue length distribu- 
tion decays more slowly for long-range dependent sources 
than for short-range dependent sources. 

Figure 9 (right) shows the queueing delay-packet loss 
trade-off curve for four levels of a. The individual perfor- 
mance points were obtained by varying buffer size while 
keeping bandwidth fixed at the baseline value. The per- 
formance curves show that under highly self-similar traffic 
conditions, the negative effects of self-similarity are signif- 
icantly amplified in the packet loss rate regime below 4%. 
A similar trade-off relation exists for queueing delay and 
throughput. The effect of varying bandwidth to obtain the 
trade-off graphs and evaluation of the marginal benefit of 
network resources are discussed in [ 171. 

4.7.2 Performance evaluation under unreliable com- 
munication 

Performance evaluations under unreliable, non-flow- 
controlled transport yield performance results that are sig- 
nificantly worse than their reliable, flow-controlled counter- 
parts. In particular, the dependence of throughput-related 
measures such as effective throughput, packet loss, and 
packet retransmission is no longer gradual-their shapes 
exhibit a superlinear dependence similar to the mean queue 
length relation in the reliable communication case. The su- 
perlinear dependence of queueing delay on the degree of 
self-similarity is further amplified, and so are trade-off re- 
lations between queueing delay and throughput. These re- 
sults we omitted due to space constraints and can be found 
in [17]. 

5 Conclusion 

In this paper, we have shown that self-similarity in net- 
work traffic can arise due to a particularly simple cause: the 

reliable transfer of files drawn from heavy-tailed distribu- 
tions. Such a high-level explanation of the self-similarity 
phenomenon in network traffic is appealing because there 
is evidence that file systems indeed possess heavy-tailed file 
size distributions [7,3, 11, 191. It also relates a networking 
problem-traffic characterization-to a system-wide cause 
which has traditionally been considered outside the net- 
working domain. The growth and prevalence of multi- 
media traffic only aggrevates the situation by facilitating the 
structural conditions for inducing self-similar network traf- 
fic, and our work supports recent efforts directed at manag- 
ing network resources in a more integrated way (“Middle- 
ware” research) in which issues such as caching and server 
selection may turn out to be relevant in formulating effec- 
tive solutions for congestion control. 

We have shown that the relationship between file size 
distribution and traffic self-similarity is not significantly af- 
fected by changes in network resources, topology, traffic 
mixing, or the distribution of interarrival times. We have 
also shown that reliability and flow control mechanisms in 
the transport layer of the protocol stack give rise to a traffic- 
shaping effect that preserves self-similarity in network traf- 
fic. This helps explain why the ON/OFF model [24], in 
spite of ignoring traffic interactions through resource limi- 
tations and feedback control, has been successful in model- 
ing observed traffic characteristics. The coupling between 
traffic sources sharing and contending for common network 
resources leads to a stretching-in-time effect which reff ects 
back to the ON/OFF model by conforming, at a qualitative 
level, to its simplifying suppositions. 

Finally, we have shown that network performance, as 
measured by packet loss and retransmission rate, declines 
smoothly as self-similarity is increased under reliable, flow- 
controlled packet transport. The only performance indicator 
exhibiting a more sensitive dependence on self-similarity 
was mean queue length, and this concurs with the observa- 
tion that queue length distribution under self-similar traffic 
decays more slowly than with Poisson sources. In contrast, 
we showed that performance declines drastically with in- 
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Figure 9. TCP run. Packet loss rate (left) and mean queue length (middle) as a function of a; queueing 
delay-packet loss trade-off curve (right). 

creasing self-similarity when a UDP-like unreliable trans- 
port mechanism was employed. This gives a sense of the 
moderating effect of TCP on network performance in the 
presence of highly bursty traffic. 
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