ISSN 1060-992X, Optical Memory and Neural Networks, 2020, Vol. 29, No. 1, pp. 30—36. © Allerton Press, Inc., 2020.

Multi-Start Method with Cutting for Solving Problems
of Unconditional Optimization

V. A. Kostenko*

Lomonosov Moscow State University, Moscow, 119991 Russia
*e-mail: kostmsu@gmail.com
Received August 26, 2019; revised December 28, 2019; accepted December 30, 2019

Abstract—In the present paper, we present a multi-start method with dynamic cutting of “unpromis-
ing” starts of locally optimal algorithms for solving continuous unconditional optimization problems.
‘We also describe our results of testing of the proposed method for solving problems of feed-forward
neural network training.

Keywords: problems of unconditional optimization, local optimal algorithm, gradient methods, multi-
start method, neural networks, machine learning

DOI: 10.3103/S1060992X20010099

1. INTRODUCTION

To solve the continuous unconditional optimization problems many researchers frequently use the gra-
dient methods. The algorithms that use gradients are local optimal. When using these methods the main
problems are:

e The choice of an initial approximation of the solution. This choice determines an optimum to which
the algorithm converges.

e The choice of a step size when changing the optimized parameters. The algorithm’s rate of conver-
gence and its stability depend on the step size.

When developing different new modifications of the gradient methods and the approaches for solving
the listed problems, the goal is to reduce their computational complexity and to increasethe accuracy.

Most fully, the obtained solutions of these problems relate to the training of feed-forward neural net-
works, however, they are rather special and not suitable for other problems.

In this paper, we propose a universal multi-start method with dynamic cutting of “unpromising” starts
that is appropriate to any continuous unconditional optimization problem. We use the problem of neural
network training to examine the method efficiency with regard to criteria of its accuracy and complexity.

In paper [1], D. Rumelhart, G. Hinton, and R. Williams developed a backpropagation algorithm for
feed-forward neural network training. It is believed that these authors were the first who presented this
algorithm but you can find a theoretical background sufficient for implementation of this algorithm in ear-
lier papers [2—4]. The concept of the backpropagation algorithm is a method allowing one to calculate
quickly vectors of partial derivatives (gradients) of complex functions of many variables. To increase the
efficiency of this method the one can use a number of its modifications. The Levenberg—Marquardt algo-
rithm [5] is one of examples. However, you cannot apply these algorithms for most other continuous
unconditional optimization problems.

The main trouble with the gradient algorithms is their strong dependence of the quality of the obtained
solution on the choice of the starting approximation point. The multi-start method is a universal tool to
eliminate this shortcoming [6]. In the framework of this method, we start the algorithm from different
starting approximation. However, this leads to a significant increase of the computational complexity. In
the same time, the method does not guarantee the optimal solution.

The authors of [7—10] proposed algorithms for choosing the starting approximation points when train-
ing a neural network with one inner layer. They showed that such algorithms improved the solution quality
and speed up the training process comparing with a random choice of the starting approximation point.
Yam and Chow [11] suggested a method that developed the idea of D. Nguyen and B. Widrow [9] based

30

MULTI-START METHOD WITH CUTTING 31

on dividing the interval of the values of weighted coefficients of hidden neurons in such a way that their
outputs fell into their active regions. Contrary to the Nguyen and Widrow algorithm, the Yam and Chow
algorithm is suitable for initializing of the weights of feed-forward neural networks with some hidden
layers.

In addition, a question about an optimal choice of the step size for the optimized parameters arises. If
the step size is too small, the convergence of the algorithm is too slow. In the same time, if the step size is
very large, the algorithm can lose its stability [12]. Adaptive algorithms for calculation of a step size for cor-
rection of optimized variables (a Quick PROP algorithm [13] and a RPROP algorithm [14]) allow us to
adjust the correction value for the particular problem and speeds up the algorithm convergence.

In the present paper, we propose a multi-start method with cutting for solving continuous uncondi-
tional optimization problems and present the results of its experimental implementation in the problems
of training of the feed-forward neural networks.

2. MULTI-START METHOD WITH DYNAMIC CUTTING

In the framework of a continuous unconditional optimization problem, we have to find the compo-
nents of the vector X = (x|, ..., x,,), X€ R" (the optimized parameters) that minimize the objective function
Yy =fX).

The main idea of the multi-start method with dynamic cutting is to perform (to initialize) some parallel
or pseudoparallel launches (starts) of a local optimal algorithm with different starting approximations. At
early stages of its work, the algorithm detects “unpromising” starts and excludes them from the consider-
ation. Then the decision-making process continues on a narrower set of starts. In such a way, we can
diminish the number of steps necessary for the decision-making, which we perform from the failed starts
and decrease the time of the algorithm work.

Let M ={K, D(C, A)} be the dynamic cut method, where

¢ A is the number of the start initialization, 4 € N, A > 1.

e Cis the maximal number of steps for one initialization variant, C € N.

¢ D is the cutting scheme that we define as a finite set of pairs of positive integers D(C, A) = {(c;,a;)}
satisfying the conditions Z; ¢ <C, z; a; = A —1, where n is the number of the algorithm stages, c; is
the number of steps at the i-th stage of each initialization, and g; is the number of cuttings at the i-th stage.

e Kis the cutting criterion estimating the start “promising”.

For any continuous unconditional optimization problem universal cutting criterions are

¢ The value of the objective function y = f(X).

¢ The rate of decrease of the value of the objective function

e The weighted sum of the first two criteria.

The computational complexity of the values of these criteria is only a small part of the computational
complexity of the whole algorithm. We can use criteria that are more complex. For example, we can deter-
mine the convergence of various initializations to the same optimum. However, such criterions can
increase the algorithm complexity significantly.

As input data for the multi-start algorithm with cutting, we have to define the following:

e an objective function y = f(X);

¢ a local optimal algorithm L;

e a distribution function of a random variable F.

The cutting method M = {K, D(C, A)}, determining the way of cutting of the “unpromising” initializa-
tions during the training process, defines the set of the algorithm parameters.

Below we describe the work of our multi-start algorithm with dynamic cutting of the “unpromising”
starts:

1. The algorithm performs A initializations of the local optimal algorithm. In accordance with the dis-
tribution function F, it chooses randomly each of the optimized parameters and numbers all the initial-
izations. When the algorithm runs, an initialization sequence number does not change.

2. The algorithm performs » stages; each i—th stage consists of ¢; steps of the remained initializations

of the local optimal algorithm. Then g; initializations with minimal values of the cutting criterion K; are
removed. In this process the algorithm performs the search for solutions in such a way that for any natural

OPTICAL MEMORY AND NEURAL NETWORKS Vol.29 No.1 2020

32 KOSTENKO

numbers p and g consistent application of p and then g steps is equivalent to application of p + g steps
simultaneously.

3. The initialization of the local optimal algorithm left after the n-th cutting stage passes through

n
C - zizl ¢; steps.
4. We consider the obtained remaining initialization as a resulting and its result is the result of the algo-
rithm run.
The total number of the local optimal algorithm steps through all the initialization is equal to

CZZZ;(A ZFO /)C +C - z Ci _C"‘Az Z, IZI 10 ac; z;c,-,whereaozo.

We will call a multi-start algorithm a special case of the multi-start algorithm with cutting where the
number of cuttings #» = 1. It is clear that the total number of the steps of the multi-start algorithm is equal
to CA.

Statement. The total number of the steps of the multi-start algorithm with cutting through all the ini-

tializations and stages at arbitrary values of ¢; and g; is less than the number of steps of the multi-start algo-
rithm without cutting.

The proof.
Let us examine the difference between C4 and Cs::

n i-l

CA-Cy =CA-C - AZC+ZZac+Zc (A—l)[ch+22ac (1)

i=l j=0 i=l j=0
Since according to the restrictions imposed on the parameters of the cutting method we have

A>1, Zn:c,sc.

From Eq. (1) it follows that

n n il n -l
(A_l)[c_ Cij"'_ . aijZ-) aic; 2 0.

3. EXPERIMENTAL TESTS

We experimentally studied the properties and efficiency of the multi-start method with cutting and
compared it with the multi-start method when training the feed-forward neural networks. We used the
criteria of the methods accuracy and computational complexity.

3.1. Problem of Neural Network Training

Atriad NET = (G,T,W) will be called a neural network where

e (GGis an oriented acyclic graph defining a topology of the neural network: its vertexes are the neurons
and its arcs are the interneuronal connections.

e T'is a set of neural network transition functions

e Wis a set of weight vectors of the neural network.

The first two components of the triad define the architecture of the neural network.

After attributing an input set of weight coefficients to the neural network with the given architecture,
we say that its initialization takes place.

Afiniteset S = {(X,,Y,)},i =1,2,..., P of the pairs the arguments — the value of the approximated func-
tion” where X, € RY , Y, e RY , IV is the number of the input neurons (the number of the function’s argu-
ments), and M is the number of the output neurons we will call a sample. A teaching sample is a sample
for which forany i, j: i # j the equality X; # X is fulfilled.

The problem of the neural network training is to select the values of the weights of the neural network

with the given architecture, which maximize the algorithm efficiency when solving an assigned applied
problem. In the present paper, we analyze a special case when we train the neural network for approxima-

OPTICAL MEMORY AND NEURAL NETWORKS Vol. 29 No.1 2020

MULTI-START METHOD WITH CUTTING 33

Fig. 1. Function £ = exp(—. 3 ~ 2 j
sin” x +cos” y

Fig. 2. Function f; = R

tion of a continuous table function. To solve this problem, we use the following criteria of the algorithm
efficiency:

(1) the accuracy of the approximation provided by the neural network;
(2) the neural network training time.

The approximation accuracy [12] provided by the neural network is defined by the mean-square-root
approximation error MSE(NET,S) calculated on a given correct sample for the approximated function.

3.2. Experimental Results

In our computer experiments with the above-described algorithm, we used continuous real functions
of two variables defined on the set [0, 1] X [0, 1]. The functions were of different types that is with different
number of extremums, different “complexity” and “uniformity” of their reliefs. To obtain a common
region of definition for each function we performed a linear transformation of coordinates according the

OPTICAL MEMORY AND NEURAL NETWORKS Vol.29 No.1 2020

34 KOSTENKO

formulas x = Oc(xo - l), y = OL(Yo — %), where x, € [0, 1], y, € [0, 1], and « is a scaling factor chosen sep-

arately for each function. Below we list of the selected functions:

1. fi =exp (%}, the scaling coefficient is 1.5;
sin” x +cos” y
2. f, = %, the scaling coefficient is 5;
1+ e—(x+sm)
3.6 = —x - y2 —1, the scaling coefficient is 1;
4. fi =1+ %, the scaling coefficient is 3;
1— ex +y +1

5. fs = sin xsin y, the scaling coefficient is 3;

6. f; = xe°””, the scaling coefficient is 10;

7. f = %sin(x2 + y?), the scaling coefficient is 6;

8. fs = sin’ x + cos’ y, the scaling coefficient is 7;

Y o X 2
=—sin x —cos"y
je'o +e!0 , the scaling coefficient is 15;

9. f, =
fo cos[ler2

2

10- o =12y 41
We can divide these functions into three groups having in mind “a complexity” of their relief:
e f, and £, belong to the first group (simple relief);

e /3, f4, /5, and f; belong to the second group (more complex relief with extremum);

® /2. /s, /9, and f, belong to the third group (multiextremal and nonuniform relief).

X

+ sin eE, the scaling coefficient is 10.

In Appendix 1, we show some examples of the graphs of the functions from each group.

For each of the examined functions we generated a sample of 441 measurements at the points that were
the nods of the lattice with the step equal to 0.1 over the region [0, 1] X [0, 1]. We used a half of the generated
sample as a training set and the remaining half was a validation set.

We used the following parameters of the multi-start algorithm with cutting:

¢ the neural network architecture was a two layer perceptron [12] with 10 neurons in each inner layer;

e the number of the first initializations (starts) was 4 = 30;

e the Levenberg—Marquardt algorithm [5] was the local optimal algorithm.

When performing the simulations we found how the cutting procedure influence the computational
complexity of the training algorithm. In the course of our experiment, the measurements showed that
when running the algorithm uses the processor time n the following way:

(1) On average, about 99.88% of the time the algorithm spends on the running of the local optimal
Levenberg—Marquardt training algorithm;

(2) On average, about 0.02% of the time the algorithm spends on the three step cutting procedure;

(3) On average, about 0.01% of the time the algorithm spends on the initialization of the weight coef-
ficients of the learning starts.

Since the most part of the algorithm’s running time of is the running time of the local optimal learning
algorithm, in what follows we estimate the algorithm complexity by the number of steps of the local opti-
malalgorithm (the number of the training steps).

When performing our experiments the number of the total steps of both the multi-start algorithms with
cutting and without cutting was the same and it was equal to 1500. The number of starts was also the same
and equal to 30. We chose the cutting scheme with the number of training steps equal to 1500 with the
maximal number of the training steps per one start equal to 65. The multi-start algorithm without cutting
includes 50 training steps per start. We compared the mean-square-root approximation errors obtained
when using different cutting schemes and the algorithm without cutting.

OPTICAL MEMORY AND NEURAL NETWORKS Vol. 29 No.1 2020

MULTI-START METHOD WITH CUTTING 35

Table 1. Comparison between different algorithms

Number of cutting steps
Function type
2 3 4
First type 53.45% 55.23% 95.74%
Second type 34.69% —16.18% 55.49%
Third type 73.04% 20.45% 93.81%
All functions 57.33% 19.83% 81.68%

Table 1 shows how the approximation error (in percent) decreases when we use the cutting schemes
with different number of steps comparing with the multi-start algorithm without cutting. We set the error
of the algorithm without cutting equal to 100%.

We determined some general properties of the schemes. Below listed the properties:

e on average the number of steps performed after all the starts prior the first cutting is not less than
25 per start and they make up about 38% of the total number of steps per start;

e the number of steps necessary to train (to adjust) the resulting neural network after the last cutting
does not exceed 10 and this number is about 15% of the total number of steps;

e at the first cutting step the algorithm cuts off at least 5 starts and that is about 17% of the total number
of starts.

4. CONCLUSIONS

The proposed multi-start method with dynamic cutting of the “unpromising” starts of local optimal
algorithms is universal when solving continuous unconditional optimization problems. When we exam-
ined experimentally the applicability of our method for training of the feed-forward neural networks and
compared it with the multi-start method using the criteria of accuracy and computational complexity, we
showed that our algorithm was much more efficient.

Using this method for solving other types of the math programming problems for which there are local
optimal algorithms it would be necessary to develop new criteria corresponding to the given type of the
problem. The chosen criteria have to be suitable when estimating if the start is “promising”.

The method is well suited for implementation on multiprocessor systems since the local optimal algo-
rithms and their starts (groups of starts) constitute a main part of their computational complexity. These
algorithms can run independently on different processors and the exchange rate between them is low.

FUNDING
The work was done with the financial support of RBRF (grant no. 19-07-00614).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. Rumelhart, D., Hinton, G., and Williams, R., Learning internal representation by error propagation, in Parallel
Distributed Processing, Cambridge, MA: MIT Press, 1986, vol. 1, pp. 318—362.
2. Parker, D., Learning logic, in Invention Report S81-64, File 1, Stanford, CA: Stanford University, 1982.

3. Werbos, P., Beyond regression: New tools for prediction and analysis in the behavioral sciences, Master’s Thesis,
Harvard University, 1974.

4. Bartsev, S.I. and Okhonin, V.A., Adaptive information processing networks, in Preprint IF SB USSR, Kras-
noyarsk, 1986, no. 59.

5. Hagan, M. and Menhaj, M., Training feedforward networks with the Marquardt algorithm, /EEE Trans. Neural
Networks, 1994, vol. 5, no. 6, pp. 989—993.

6. Zhiglyavskii, A.A. and Zhilinskas, A.G., Metody poiska global’nogo ekstremuma (Methods for Global Extremum
Search), Moscow: Nauka, 1991.

OPTICAL MEMORY AND NEURAL NETWORKS Vol.29 No.1 2020

36

10.

11.

12.
13.

14.

15.

KOSTENKO

Markin, M.1., The choice of the initial approximation in training a neural network using local optimization
methods, Proceedings of the Second All- Russian Scientific and Technical Conference Neuroinformatics-2000, Mos-
cow, 2000, part 1.

Markin, M.I., About one method of increasing the efficiency of learning a direct distribution neural network,
Software Systems and Tools: Thematic Collection of the VMiK Faculty of Lomonosov Moscow State University, Mos-
cow, 2000, no. 1, pp. 87—97.

Nguyen, D. and Widrow, B., Improving the learning speed of 2-layer neural networks by choosing initial values
of the adaptive weights, Proceedings of the International Joint Conference on Neural Networks, 1990, vol. 3,
pp. 21-26.

Osowski, S., New approach to selection of initial values of weights in neural function approximation, Electron.
Lett., 1993, vol. 29, pp. 313-315.

Yam, J.Y.F. and Chow, T.W.S., A weight initialization method for improving training speed in feedforward neu-
ral network, Neurocomputing, 2000, vol. 30, no. 1, pp. 219—232.

Wasserman, P.D., Neural Computing: Theory and Practice, Coriolis Group, 1989.

Fahlman, S., Faster-learning variations on back-propagation: An empirical study, Proceedings of the 1958 Con-
nectionist Models Summer School, 1989, pp. 38—51.

Riedmiller, M. and Braun, H., A direct adaptive method for faster backpropagation learning: The RPROP al-
gorithm, Proceedings of the IEEFE International Conference on Neural Networks 1993, San Francisco, 1993.
Minoux, M., Mathematical Programming: Theory and Algorithms, Wiley, 1986.

OPTICAL MEMORY AND NEURAL NETWORKS Vol. 29 No.1 2020

	1. INTRODUCTION
	2. MULTI-START METHOD WITH DYNAMIC CUTTING
	3. EXPERIMENTAL TESTS
	3.1. Problem of Neural Network Training
	3.2. Experimental Results

	4. CONCLUSIONS
	REFERENCES

