
Building a Security Policy Tree
for SDN Controllers1

S. Morzhov V. Sokolov

Department of theoretical information science
Yaroslavl State University

Department of theoretical information science
Yaroslavl State University

Yaroslavl, Russia Yaroslavl, Russia

E-mail: smorzhov@gmail.com E-mail: valery-sokolov@yandex.ru

M. Nikitinskiy D. Chaly

Department of Innovative Development
A-Real Group, Energiya-Info Inc.

Department of information and network technologies
Yaroslavl State University

Yaroslavl, Russia Yaroslavl, Russia

E-mail: man@a-real.ru E-mail: dmitry.chaly@gmail.com

Abstract — ​A firewall is a network security system that mon-
itors and controls the incoming and outgoing network traffic based
on predetermined security rules often called security policy.
Managing firewall rules, especially for large enterprise networks,
is complex and error-prone task. Firewall filtering rules have to
be written carefully and organized in order to implement the
security policy correctly. In addition, inserting or modifying a
filtering rule requires thorough analysis of the relationship be-
tween this rule and other rules in order to determine the proper
order of this rule.

In this paper, the authors propose their classification of col-
lisions that may occur among the rules of the security policy. In
addition, the authors present their new efficient algorithm for
detecting and resolving collisions in firewall rules on the example
of the Floodlight SDN controller. This algorithm can be used to
find security holes in the rules set, to minimize the number of
rules in the existing security policy or to prevent appearance of
any collisions in real time.

Keywords — ​software-defined network, firewall, PreFirewall,
SDN, ACL, access control list

I. Introduction
1

The task of ensuring security in SDN is divided into
two large parts. The first subtask is to ensure the secure
functioning of all basic network infrastructure compo-
nents, i. e. SDN controller and its applications, switches,
managed by it and communication channels between the
controller and the switches. The second subtask is to
ensure the security of the end devices, servers and storage
systems, i. e. classic network components.

Firewall is a classical network security system that
monitors and controls incoming and outgoing network
traffic based on predetermined security rules, often called
security policy. In traditional networks, it is usually con-

1	 This work is partially supported by RFBR under the grants 17-07-
00823-а and 16-07-01103а.

figured on the edge network devices. The SDN approach
allows us to manage and configure network equipment,
which makes it possible to apply firewall policies not only
on the edge devices, but also on the rest of the switching
equipment of the local network. When firewall is enabled
on the network device close to another device, which
generates prohibited traffic, the load on the local network
is reduced; the resources of the network devices are freed
up because the packets do not pass through the entire
local network.

The management of modern networks is often difficult
and confusing, since the network administrator needs to
configure the network equipment (routers, switches) and
software, which provides network services such as Network
Address Translation (NAT), load balancing system server,
intrusion detection system (IDS), IP‑telephony server,
etc. Each sources described above can generate and add
new firewall rules. Since they do not coordinate with each
other, collisions between added rules may occur. Two rules
are collided when they are overlapped or shadowed by
each other [2]. Security policy with collided rules is very
difficult to analyze and maintain. Network administrator
has to spend more time sorting out the rules, some of
which may be meaningless. This monotonous and com-
plicated work is error-prone and leads to holes and gaps
appearance in security policy, which directly affect the
functioning of the network as a whole.

II. Relation between rules

Firewall rule of SDN controller has the following
structure (Table I) [1].

To resolve collisions that may occur after adding a new
rule to the firewall, we need to compare the added rule

978-1-5386-9456-5/18/$31.00 ©2018 IEEE

with all existing ones. To compare two rules, a pairwise
comparison of the values of the corresponding rules at-
tributes is performed. Since the value of the attribute is a
finite set, then for comparison it is necessary to use rela-
tions over sets. All possible relations between the sets of
values of the corresponding attributes can be represented
as follows:

(a)  Set A and set B are not intersected, A ∩ B = ∅.

(b)  Set A and set B are equal, A = B.

(c)  Set B is a subset of the set A, B ⊂ A.

(d)  Set A and set B are intersected, A ∩ B ≠ ∅, but
A ⊄ B and B ⊄ A.

Comparison of two rules can be defined as follows
[3, 4].

Definition 1. Two rules r and s are disjoint (RD), if they
have at least one attribute with disjoint values. Formally,
it can be written as:

	 r s a attr a aD r sR , , если ∃ ∈ ∩ = ∅.

For example, rules 1 and 2 below are disjoint, because
they have different values for the attribute “src-port” (21
and 9050):

1.  tcp, 193.168.*, 192.168.0.1, 21, allow.

2.  tcp, 193.168.*, 192.168.0.1, 9050, allow.

Definition 2. Two rules r and s are exactly matched
(REM), if the corresponding values of all their attributes
are equal. Formally, it can be written as:

	 r s a attr a aEM r sR , , если ∀ ∈ = .

For example, rules 1 and 2 below are exactly matched
since the corresponding values of all their attributes are
equal:

1.  tcp, 193.168.*, 192.168.0.1, 21, allow.

2.  tcp, 193.168.*, 192.168.0.1, 21, allow.

Definition 3. Two rules r and s are inclusively matched
(R IM), if the rule r has at least one attribute whose value
is a subset of the corresponding attribute of the rule s, and
the remaining attributes of the rules are equal. Formally,
it can be written as:

	 ∃ ∈ ⊂ ∀ ∈ =a attr a a b attr a b br s r s, { \ }, и .

For example, rule 1 is a subset of rule 2, since all the
attributes of rule 1 are equal to the corresponding attri-
butes of rule 2, except for the attribute “src-ip”. In rule
1, the value of the attribute “src-ip” is a subset of the value
of the “src-ip” attribute of rule 2:

1.  tcp, 193.168.0.1, 192.168.0.1, 21, deny.

2.  tcp, 193.168.*, 192.168.0.1, 21, deny.

Definition 4. Two rules r and s are correlated (RC), if
they are not disjoint, equal or inclusively match each
other. Formally, it can be written as:

	r s r s r s s rC D IM IMR R R R, () () () если ¬ ∧ ¬ ∧ ¬ .

For example, rules 1 and 2 are correlated, since the
values of the attributes “nw-proto” and “src-port” are
equal. For rule 1, the value of the attribute “src-ip” is a
subset of the value of the corresponding attribute of rule 2,
and the value of the attribute “dst-ip” of rule 1 is a super-
set of the value of the corresponding attribute of rule 2:

1.  tcp, 193.168.*, *, 21, allow.

2.  tcp, *, 192.168.0.1, 21, deny.

Lemma 1. Any two rules that have two attributes can
be in one of four relations: RD, REM , R IM or RC.

Proof. Consider rules R x xx = 〈 〉1 2, and R y yy = 1 2, .
The relation between them is determined by the relation
between the corresponding values of their attributes, that
is, � � �x yi iR , where { , , , }, ,ℜ ∈ = ⊂ ⊃ =�� i 1 2. The operator
�� is defined as follows:

	 x y x y x y x�� ⇔ ≠ ∧ ⊄ ∧ y x y∧ ∩ ≠ ∅.

Consider all possible relations between attributes Rx
and Ry.

If и then x y x y R Rx EM y1 1 2 2= = R

If и then x y x y R Rx IM y1 1 2 2= ⊂ ℜ
If и then x y x y R Rx IM y1 1 2 2= ⊃ ℜ
If и then x y x y R Rx C y1 1 2 2= ℜ��

If и then x y x y R Rx D y1 1 2 2= ℜ ℜ
If и then x y x y R Rx IM y1 1 2 2⊂ = ℜ
If и then x y x y R Rx IM y1 1 2 2⊂ ⊂ ℜ
If и then x y x y R Rx C y1 1 2 2⊂ ⊃ ℜ
If и then x y x y R Rx C y1 1 2 2⊂ ℜ��

If и then x y x y R Rx D y1 1 2 2⊂ ℜ ℜ
If и then x y x y R Rx IM y1 1 2 2⊃ = ℜ

Table 1. Rule fields of SDN controller

Filed name Possible value Description

switchid xx: xx: xx: xx: xx: xx: xx: xx Switch identification
number

src-inport short Input switch port
number

src-mac xx: xx: xx: xx: xx: xx Source MAC‑address

dst-mac xx: xx: xx: xx: xx: xx Destination
MAC‑address

dl-type ARP or IPv4 protocol

src-ip A.B.C.D/M Source IP‑address

dst-ip A.B.C.D/M Destination IPaddress

nw-proto TCP or UDP or ICMP protocol

tp-src short Source port number

tp-dst short Destination port
number

priority int Priority of the rule
(less is more
important)

action allow or deny Allow or deny set
of network flows
which are match

rule

If и then x y x y R Rx C y1 1 2 2⊃ ⊂ ℜ
If и then x y x y R Rx IM y1 1 2 2⊃ ⊃ ℜ
If и then x y x y R Rx C y1 1 2 2⊃ ℜ��
If и then x y x y R Rx D y1 1 2 2⊃ ℜ ℜ
If и then x y x y R Rx C y1 1 2 2�� = ℜ
If и then x y x y R Rx C y1 1 2 2�� ⊂ ℜ
If и then x y x y R Rx C y1 1 2 2�� ⊃ ℜ
If и then x y x y R Rx C y1 1 2 2�� �� ℜ
If и then x y x y R Rx D y1 1 2 2�� ℜ ℜ
If и then x y x y R Rx D y1 1 2 2ℜ = ℜ
If и then x y x y R Rx D y1 1 2 2ℜ ⊂ ℜ
If и then x y x y R Rx D y1 1 2 2ℜ ⊃ ℜ
If и then x y x y R Rx D y1 1 2 2ℜ ℜ��
If и then x y x y R Rx D y1 1 2 2ℜ ℜ ℜ
Thus, it was shown that Rx and Ry are always in one

of four relations: RD, REM , R IM or RС  .

Lemma 2. Adding one attribute to any two rules Rx
and Ry that are in relation ℜ = ℜ ℜ ℜ ℜD EM IM С, , , ,
leaves the rules Rx and Ry in their former relation R or
translates them into the new relation ′ℜ = ℜ ℜD EM, ,
ℜ ℜIM С, .

Proof. Consider rules R x xx k= 〈 〉1, ..., and
R y yy k= 〈 〉1, ..., . Let is add an attribute xk +1 to the rule
Rx and an attribute yk +1 to the rule Ry. Let is denote the
new rules as ′Rx and ′Ry respectively. If rules Rx and Ry were
in relation ℜ = ℜ ℜ ℜ ℜD EM IM С, , , then rules ′Rx and

′Rycan be in one of the following relations:

If and then R R x y R Rx D y k k x D yℜ = ′ℜ ′+ +1 1

If and then R R x y R Rx D y k k x D yℜ ⊂ ′ℜ ′+ +1 1

If and then R R x y R Rx D y k k x D yℜ ⊃ ′ℜ ′+ +1 1

If and then R R x y R Rx D y k k x D yℜ ′ℜ ′+ +1 1��
If and then R R x y R Rx D y k k x D yℜ ℜ ′ℜ ′+ +1 1

If and then R R x y R Rx EM y k k x EM yℜ = ′ℜ ′+ +1 1

If and then R R x y R Rx EM y k k x IM yℜ ⊂ ′ℜ ′+ +1 1

If and then R R x y R Rx EM y k k x IM yℜ ⊃ ′ℜ ′+ +1 1

If and then R R x y R Rx EM y k k x C yℜ ′ℜ ′+ +1 1��
If and then R R x y R Rx EM y k k x D yℜ ℜ ′ℜ ′+ +1 1

If and then R R x y R Rx IM y k k x IM yℜ = ′ℜ ′+ +1 1

If and then R R x y R Rx IM y k k x IM yℜ ⊂ ′ℜ ′+ +1 1

If and then R R x y R Rx IM y k k x C yℜ ⊃ ′ℜ ′+ +1 1

If and then R R x y R Rx IM y k k x C yℜ ′ℜ ′+ +1 1��
If and then R R x y R Rx IM y k k x D yℜ ℜ ′ℜ ′+ +1 1

If and then R R x y R Rx C y k k x C yℜ = ′ℜ ′+ +1 1

If and then R R x y R Rx C y k k x C yℜ ⊂ ′ℜ ′+ +1 1

If and then R R x y R Rx C y k k x C yℜ ⊃ ′ℜ ′+ +1 1

If and then R R x y R Rx C y k k x C yℜ ′ℜ ′+ +1 1��
If and then R R x y R Rx C y k k x D yℜ ℜ ′ℜ ′+ +1 1

Thus, it was shown that ′Rx and ′Ry are in one of the
following relations ℜD, ℜEM , ℜIM or ℜС   .

Theorem. Relations ℜD, ℜEM , ℜIM , ℜС form a uni-
versal set of relations between two rules Rx and Ry.

Proof. We will prove the theorem by the method of
mathematical induction.

Base step. Showing that theorem is true for k = 2,
R x xx = 〈 〉1 2, , R y yy = 〈 〉1 2, is trivial. It follows from the
lemma 1.

Step case. Let the theorem be true for R x xx k= 〈 〉1, ..., ,
R y yy k= 〈 〉1, ..., and R Rx yℜ , where ℜ ∈ ℜ ℜ{ , ,D EM
ℜ ℜIM С, } . Let is add a new attribute xk +1 to the rule Rx,
an attribute yk +1 to the rule Ry and denote the new rules
as ′Rx and ′Ry. Since the rules ′Rx and ′Ry were obtained by
adding one new attribute to the rules Rx and Rysuch that
R Rx yℜ then, by lemma 2, ′ ′ ′ℜR Rx y, where ′ℜ ∈ ℜ ℜ{ , ,D EM
ℜ ℜIM С, }   .

Thus, a collision between two rules is understood as
the relations between the rules given in definitions 2, 3
and 4.

III. Building policy tree

We will call a rule “good” if security policy remains
free from all possible collisions, defined in chapter II,
after adding this rule into it. If some collision occurred
after adding a rule, then the rule will be called “bad”. It
is reasonable to assume that “good” rules are added into
security policy more often than “bad” ones. In addition,
it is worth noting that to understand whether the rule is a
“good” or a “bad” one is impossible without comparing
it with the rules, which were added previously to the se-
curity policy. Considering this, there is an obvious fact.
To understand that a new rule is “good” is usually com-
putationally not easier, but rather more difficult than to

Fig. 1. Policy tree

understand that this rule is “bad”, because, in general,
we can conclude that the rule is “good” only after we
check that it does not collide with every rule added to the
security policy earlier. Thus, the operation of adding a
“good” rule should be as simple as possible.

Consider a tree-like data structure [5]. We will show
that it is able to satisfy all conditions that have been set,
and that it is optimal for our task. The rule consists of 12
attributes (see TABLE I). Each attribute can take one
value from a certain set. For example, the attribute “dl-
type” can only take values ​​from the set {ipv4, arp, *}
whose power is 3, and the attribute “src-ip” can be equal
to any of ()2 18 4+ IP addresses (possible wildcards 1 are
taken into account). Then, we sort out all attributes except
“priority” and “action” in order of increasing powers of
the sets of their possible values and put “priority” and
“action” attributes at the end of the received sequence.

So, as a result of ordering, a 12-dimensional tuple is
obtained. Since the rules will be stored in the tree, the
12-dimensional tuple must correspond to one path from
the root to the leaf in this tree, and each path from the
root to the leaf in the tree must correspond to one 12-di-
mensional tuple representing the security policy rule. We
establish a one-to-one correspondence between the val-
ues ​​of the 12-dimensional tuple and the levels of the tree.
The first value of the tuple corresponds to the root of the
tree; the second one — ​to the vertices on the first level;
the third — ​to the vertices on the second level etc. The
twelfth element of the tuple will correspond to the leaves
at the eleventh level of the tree (see Fig. 1). Since the
“dl-type” attribute can have only three values, it will
correspond to the root of the tree. The attribute “nw-
proto” has four different values. It will correspond to the
vertices of the first level of the rules tree. The leaves at
the eleventh level of the tree will contain one of two pos-
sible values — ​allow for the resolving rule and deny for
the forbidding rule.

Let each vertex of the rules tree contain a hash table
(key-value pair). Keys in the hash table will contain the
values corresponding to the attribute level of the security
policy rules. Values in the hash table will contain memory
addresses of the adjacent vertex on a lower level. Thus,
the hash table of the tree root, shown in Fig. 1, will con-
tain two keys: “ipv4” and “arp”. The values of these keys
are the addresses to the left and right subtrees, respec-
tively.

Note that the order of the elements in the tuple that
correspond to a rule of the security policy was not chosen
by chance. All attributes, except of “priority” and “ac-
tion”, were ordered by increasing the powers of the sets of
their possible values in order to minimize the lengths of
the descending paths that arise when rules are added to

1	 A wildcard character is a kind of placeholder represented by a
single character, such as an asterisk (*), which can be interpreted
as a number of literal characters or an empty string.

the tree. Let us show that this approach ensures the most
efficient use of memory necessary for storing the rules tree.

Suppose there are two rule trees. Let the first tree be
constructed as described above, and the second one be
constructed in the same manner, but with the only differ-
ence that the attributes in the tuple are ordered in de-
scending order of the powers of the sets of their possible
values. Thus, the first tree expanding gradually from the
root to the leaves and the second tree in the general case
becomes wide immediately. We estimate the maximum
possible number of hash tables for the first and second
trees. In evaluating, for simplicity of calculations, without
loss of generality, let is suppose that both trees store rules
with five attributes: “dl-type”, “nw-proto”, “tp-src”,
“src-ip”, and “action”.

Consider the first tree. Maximum three entries — ​
“tcp”, “udp”, “icmp” and “*” — ​can be in the hast-table
of the first level. Therefore, on the third level, there can
be 3 4 12* = tables having 216 entries each because to store
the port number (the third level of the tree corresponds
to the attribute “tp-src” — ​the source port number),
16 bits of memory are allocated. At the fourth level, ip-
addresses are stored, which means that the hash table can
contain up to ()2 18 4+ entries, considering possible wild-
card characters. Thus, the first tree will contain

	 1 3 3 4 3 4 216+ + + =* * * A

hash tables. Similarly, by calculating the number of hash
tables for the second tree, we get

	1 2 1 2 1 2 2 1 2 48 4 8 4 16 8 4 16+ + + + + + =() () * () * * B,

	 B A>>> .

Obviously, no matter how the attributes are ordered,
the number of hash tables A in the first rule tree will be
the smallest.

IV. Colisions resolution

Based on the relationship between the rules as well as
the possible collisions defined in chapter II, an algorithm
for resolving collisions was developed. The main idea of ​​
the algorithm is that the new rule have to be added to the
rules tree, which is free of all collisions. If the path in the
tree corresponding to the new rule coincides with some
path in the tree representing the previously added rule,
then a collision that must be resolved was found. Other-
wise, adding a new rule will leave the security policy free
from all kinds of collisions. This logic is implemented in
the algorithm DiscoverCollision.

DiscoverCollision(rule, field, node, collision_state):

1.	 if field ≠ ACTION then
2.	 value_found = FALSE
3.	 if field in node.keys then
4.		 if collision_state = NOCOLLISION then
5.			 collision_state = REDUNDANT
6.			 DiscoverCollision(rule, field.next,

				 field[node], collision_state)
7.	 else
8.		 if rule.field.value ⊃ branch.value
9.			 if collision_state = GENERALIZATION then
10.				 DiscoverCollision (rule, field.next, field[node],
				 CORRELATION)
11.			 else
12.				 DiscoverCollision (rule, field.next, field[node],
					 SHADOWING)
13.		 else if rule.field.value ⊃ branch.value
14.			 if collision_state = SHADOWING then
15.				 DiscoverCollision (rule, field.next,
					 field[node], CORRELATION)
16.			 else
17.				 DiscoverCollision (rule, field.next,
					 field[node], GENERALIZATION)
18.			 end if
19.		 end if
20.	else
21.		 node.add(field, NULL)
22.		 DiscoverCollision (rule, field.next, field[node],
			 NOANOMALY)
23.	else // action field was reached
24.		 DecideCollision(rule, field, node, collision_state)

The DecideCollision algorithm that makes the final
verdict regarding the presence or absence of collisions is
called when the path of the rule added in the rule tree has
been fully defined and the “action” attribute has been
reached.

DecideCollision(rule, field, node, collision):

1.	 if node in branch_list then
2.		 branch = node.branch_list.first()
3.		 if collision = CORRELATION then
4.			 if rule.action ≠ branch.value then
5.				 report rule rule.id is in correlation with rule
					 branch.rule.id
6.			 else if collision = GENERALIZATION and
7.				 rule.action ≠ branch.value then
8.				 report rule.id is a generalization of rule
					 branch.rule.id
9.			 else if collision = GENERALIZATION and
10.				 rule.action = branch.value then
11.				 branch.rule.setCollision(REDUNDANCY)
12.				 report branch.rule.id is redundant to rule rule.id
13.			 else if rule.action = branch.value then
14.				 collision = REDUNDANCY
15.				 report rule.id is redundant to rule branch.rule.id
16.			 else if rule.action ≠ branch.value then
17.				 collision = SHADOWING
18.				 report rule.id is shadowed by rule branch.rule.id
19.			 end if
20.		 end if
21.	rule.setCollision(collision)

After the collision type has been defined, a new rule
can be added to the security policy (no collisions), not

added (generalization or redundancy collision), or added
partly (correlation). The latter case is the most interesting
and complex, so it should be considered separately.

If it was determined that the two rules are correlated,
they can be “broken up” into disjoint parts, which will be
added to the security policy instead of adding the original
correlated rule. For this purpose, first, we need to find a
set of rules’ attributes with disjoint values. After that, for
each of the found attributes, the Split algorithm, listed
below, is called. It modifies the rules r and s so that they
do not correlate.

The Split algorithm receives two correlated rules r and
s and an attribute a, whose value is disjoint for these rules.
As can be seen from Fig. 2 the common part of the value
of the attribute always starts with max{r.a.start, s. a.start}
and ends with min{r.a.end, s. a.end}. The non-intersect-
ing part before the common part always starts with
min{r.a.start, s. a.start} and ends with max{r.a.start, s. a.
start} - ​1. The non-intersecting part after the common
part always starts with min{r.a.end, s. a.end} + 1 and ends
with max{r.a.end, s. a.end}. The disjoint parts of r and s
rules can be added to the rules tree via the DiscoverCol-
lision algorithm, as it is not guaranteed that they do not
conflict with pre-existing rules.

In the Split algorithm, the common part of the two
correlated rules is calculated firstly, and then the disjoint
parts are found and added to the rules tree as new ones.

Split(r, s, a):

1.	 left = min(r. a.start, s. a.start)
2.	 right = max(r. a.end, s. a.end)
3.	 common_start = max(r. a.start, s. a.start)
4.	 common_end = min(r. a.end, s. a.end)
5.	 if r. a.start > s. a.start then
6.		 DiscoverCollision(〈(left, common_start‑1), s’rest
			 attributes〉, first_filed, first_node, NOANOMALY)
7.	 else if r. a.start < s. a.start then
8.		 DiscoverCollision (〈(left, common_start‑1), r’s rest
			 attributes〉, first_filed, first_node, NOANOMALY)
9.	 if r. a.end > s. a.end then
10.		 DiscoverCollision (〈(common_end+1, right),
			 r’s rest attributes〉, first_filed, first_node,
			 NOANOMALY)
11.	else if r. a.end < s. a.end then

Fig. 2. Splitting an attribute.
(a) r.a.start < s.a.start & r.a.end < s.a.end, thus, the interval can be
split on [r.a.start, s.a.start − 1], [s.a.start, r.a.end] and [r.a.end + 1,
s.a.end]. (b) r.a.start > s.a.start & r.a.end > s.a.end, thus, the inter-
val can be split on [s.a.start r.a.start − 1], [r.a.start, s.a.end] and
[s.a.end + 1, r.a.end].

12.		 DiscoverCollision (〈(common_end+1, right),
			 s’rest attributes〉, first_filed, first_node,
			 NOANOMALY)
13.	r = 〈(common_start, common_end), r’s rest attributes〉
14.	s = 〈(common_start, common_end), s’rest attributes〉

After the algorithms are completed, the rules tree will
be free of all collisions, defined in chapter II.

V. Conclusion and future work

The main advantage of the collision resolution algo-
rithm presented in chapter III is its, in general case, con-
stant complexity. However, this algorithm has one sig-
nificant drawback. Without cardinal changes, it is difficult
to adapt it for working with rules containing wildcards.
In this case, the word “difficult” should be understood in
the sense that it is difficult to adapt the algorithm while
maintaining the constant complexity. If we will not con-
sider the requirement of maintaining constant complex-
ity, then the collision resolution algorithm becomes
trivial (see DiscoverCollision2).

DiscoverCollision2(rule, field, node, collision_state):

1.	 if field ≠ ACTION then
2.	 value_found = FALSE
3.	 for each branch in node.branch_list do
4.		 if branch.value = rule.field.value then
5.			 value_found = TRUE
6.			 if collision_state = NOANOMALY then
7.				 collision_state = REDUNDANT
8.				 DiscoverCollision(rule, field.next,
					 branch.node, collision_state)
9.			 else
10.				 if rule.field.value ⊂ branch.value
11.					 if collision_state = GENERALIZATION then
12.						 DiscoverCollision (rule, field.next,
							 branch.node, CORRELATION)
13.					 else
14.						 DiscoverCollision (rule, field.next,
							 branch.node, SHADOWING)
15.				 else if rule.field.value ⊃ branch.value
16.					 if collision_state = SHADOWING then
17.						 DiscoverCollision (rule, field.next,
							 branch.node, CORRELATION)
18.					 else
19.						 DiscoverCollision (rule, field.next,
							 branch.node, GENERALIZATION)
20.				 end if

21.			 end if
22.		 end for
23.		 if value_found = False then
24.			 new_branch = new TreeBranch(rule, rule.field,
				 rule.filed.value)
25.			 node.branch_list.add(new_branch)
26.			 DiscoverCollision (rule, field.next,
				 new_branch.node, NOANOMALY)
27.		 end if
28.	else. // action field was reached
29.	DecideCollision(rule, field, node, collision_state)

The main difference between the DiscoverCollision2
algorithm and the DiscoverCollision algorithm is that at
each level of the tree, before adding (or not adding) a new
value, we compare it with all previously added ones. This
ensures that all wildcards will be processed correctly. At
the same time, this change leads to the loss of meaning in
the use of hash tables. Moreover, complexity of the algo-
rithm increases due to for each loop (line 3). In the future,
we are planning to conduct research in this direction with
a view to improving DiscoverCollision2 algorithm.

Among other things, the issue of the need to resolve
all types of collisions remains open. Often, system ad-
ministrators intentionally include rules that are correlated
with other ones in security policy. The resolution of col-
lisions in such a case is an error. Thus, it can be argued
that the most important and priority remains an issue of
the need to resolve collision, because sometimes it is not
good to be unexpectedly too clever or pretend to be more
clever than a qualified network administrator.

References

1.	 Floodlight SDN OpenFlow Controller, Web: https://github.com/
floodlight/floodlight

2.	 Sergey Morzhov, Igor Alekseev and Mikhail Nikitinskiy, “Firewall
application for Floodlight SDN controller,” IEEE Control and
communications (SIBCON), International Siberian Conference.
Moscow, pp. 1–5, June 2016.

3.	 E. Al-Shaer and H. Hamed. “Design and implementation of
firewall policy advisor tools,” Technical Report CTI‑techrep0801,
School of Computer Science Telecommunications and Informa-
tion Systems, DePaul University, August 2002.

4.	 M. Abedin, S. Nessa, L. Khan, B. Thuraisingham, “Detecting
and Resolving Firewall Policy Anomalies,” IEEE Transactions
on Dependable and Secure Computing, Vol. 9, pp. 318–331.

5.	 Morzhov S. V. and Nikitinskiy M. A., “A new approach for detect-
ing and resolving anomalies in security policy of the external
firewall module of the Floodlight SDN controller,” Modeling
and Analysis of Information Systems. Yaroslavl, vol. 25, pp. 251–
256, June 2018.

