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ABSTRACT
All network devices must parse packet headers to decide
how packets should be processed. A 64 × 10 Gb/s Ethernet
switch must parse one billion packets per second to extract
fields used in forwarding decisions. Although a necessary
part of all switch hardware, very little has been written on
parser design and the trade-offs between different designs. Is
it better to design one fast parser, or several slow parsers?
What is the cost of making the parser reconfigurable in the
field? What design decisions most impact power and area?

In this paper, we describe trade-offs in parser design, iden-
tify design principles for switch and router designers, and
describe a parser generator that outputs synthesizable Ver-
ilog that is available for download. We show that i) packet
parsers today occupy about 1-2% of the chip, and ii) while
future packet parsers will need to be programmable, this
only doubles the (already small) area needed.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Network Communications

Keywords
Parsing; Design principles; Reconfigurable parsers

1. INTRODUCTION
Despite their variety, every network device examines fields

in the packet headers to decide what to do with each packet.
For example, a router examines the IP destination address
to decide where to send the packet next, and a firewall com-
pares several fields against an access-control list to decide
whether to drop a packet.

The process of identifying and extracting the appropriate
fields in a packet header is called parsing and is the subject
of this paper. Our main thesis is that packet parsing is a key
bottleneck in high speed networks because of the complex-
ity of packet headers, and design techniques for low-latency
streaming parsers are critical for all high speed networking
devices today.

Why is packet parsing challenging? The length and for-
mat of packets vary between networks and between packets.
A basic common structure is one or more headers, a payload,
and an optional trailer. At each step of encapsulation, an
identifier included in the header identifies the type of data
subsequent to the header. Figure 1 shows a simple example
of a TCP packet.
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Figure 1: A TCP packet.

In practice, packets often contain many more headers.
These extra headers carry information about higher level
protocols (e.g., HTTP headers) or additional information
that existing headers do not provide (e.g., VLANs1 in a col-
lege campus, or MPLS2 in a public Internet backbone). It is
common for a packet to have eight or more different packet
headers during its lifetime.

To parse a packet, a network device has to identify the
headers in sequence before extracting and processing specific
fields. A packet parser seems straightforward since it knows
a priori which header types to expect.

In practice, designing a parser is quite challenging:

1. Throughput. Most parsers must run at line-rate,
supporting continuous minimum-length back-to-back
packets. A 10 Gb/s Ethernet link can deliver a new
packet every 70 ns; a state-of-the-art Ethernet switch
ASIC with 64 × 40 Gb/s ports must process a new
packet every 270 ps.

2. Sequential dependency. Headers typically contain
a field to identify the next header, suggesting sequen-
tial processing of each header in turn.

3. Incomplete information. Some headers do not iden-
tify the subsequent header type (e.g., MPLS) and it
must be inferred by indexing into a lookup table or by
speculatively processing the next header.

4. Heterogeneity. A network device must process many
different header formats, which appear in a variety of
orders and locations.

5. Programmability. Header formats may change after
the parser has been designed due to a new standard,
or because a network operator wants a custom header

1Virtual LAN [20].
2Multiprotocol Label Switching [19].



field to identify traffic in the network. For example,
PBB, VxLAN, NVGRE, STT, and OTV have all been
proposed or ratified in the past five years.

While every network device contains a parser, very few pa-
pers have been published describing their design. We know
of only two papers directly related to packet parsing [1, 8]:
neither evaluated the trade-offs between area, speed, and
power, and both introduce latency unsuitable for high speed
applications. Regular expression matching work is not ap-
plicable: parsing processes a subset of each packet under
the control of a parse graph, while regex matching scans the
entire packet for matching expressions.

The goal of this paper is to educate designers as to how
parser design decisions impact area, speed, and power via a
design space exploration, considering both hard-coded and
reconfigurable designs. We do not propose a single “ideal”
design as we believe this is use-case specific.

A natural set of questions arise when setting out to de-
sign a parser. What are the area and power trade-offs be-
tween building one parser for an entire chip, versus breaking
it down into multiple parallel parsers? What word width
should we use to process the headers? A narrow word width
requires a faster clock, while a wide word might require
processing several headers in one step. How programmable
should the parser be? What flexibility do users need to add
arbitrary new headers, with fields in arbitrary locations?

We set about answering these questions as follows. First,
we describe the parsing process in more detail (§2) and
introduce parse graphs to represent header sequences and
describe the parsing state machine (§3). Next, we discuss
the design of fixed and programmable parsers (§4), and de-
tail the generation of table entries for programmable designs
(§5). Finally, we present a number of parser design princi-
ples identified through an analysis of different parser designs
(§6). The designs were generated using a tool we built that,
given a parse graph, generates parser designs parameterized
by processing width and more. We generated over 500 dif-
ferent parsers and synthesized them against a TSMC 45 nm
ASIC library. So as to compare our designs, each parser is
designed to process packets in an Ethernet switching ASIC
with 64 × 10 Gb/s ports.

The contributions of this paper:

• We introduce the problem of designing streaming packet
parsers (§4.5).

• We outline the similarities and differences to instruc-
tion decoding in processors (§4.6).

• We describe a new methodology for designing stream-
ing parsers to optimize area, speed, and power (§6.1).
By contrast, [8] used an FPGA implementation and a
theoretical model that provides no insight into general
ASIC area-power trade-offs.

• We describe multiple results, including those for a 64
× 10 Gb/s switch, an important component in today’s
networks, and identify design principles for switch de-
signers (§6.2, §6.3).

• We show that a programmable parser occupies 1–2%
of die area (§6.3).

• We show that the cost of programmability is a factor
of two (§6.3).

2. PARSING
Parsing is the process of identifying headers and extract-

ing fields for processing by subsequent stages of the device.
Parsing is inherently sequential: each header is identified by
the preceding header, requiring headers to be identified in
sequence. An individual header contains insufficient infor-
mation to uniquely identify its type. Next header fields are
shown in Figure 1 for the Ethernet and IP headers—i.e., the
Ethernet header indicates that an IP header follows.

The parsing process is illustrated in Figure 2. The large
rectangle represents the packet being parsed and the smaller
rounded rectangle represents the current processing loca-
tion. Parser state tracks the current header type and length.
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Figure 2: The parsing process. (Field extraction omitted for
simplicity.)

Processing begins at the head of the packet (2a). The
initial header type is typically fixed for a given network and
thus known by the parser (e.g., Ethernet). The structure
of each header type is known by the parser, allowing it to
identify the location of field(s) indicating the current header
length and the next header type.

The parser reads the next header field and identifies the
next header type as IPv4 (2b). IPv4 headers are variable
length. The length is contained within a header field but it
is initially unknown to the parser.

The IPv4 header length is read and the parser’s state is
updated appropriately (2c). The length identifies the next
header’s location and must be resolved before processing can
commence on the subsequent header.



This process repeats until all headers are processed. Field
extraction is performed in parallel with header identification;
extraction is omitted from the diagram for simplicity.

3. PARSE GRAPHS
A parse graph expresses the header sequences recognized

by a switch or seen within a network. Parse graphs are
directed acyclic graphs, with vertices representing header
types and edges specifying the sequential ordering of head-
ers. Parse graphs for several use cases are shown in Fig-
ures 3a–3d.

The parse graph is the state machine that sequentially
identifies the header sequence within a packet. Starting at
the root node, state transitions are taken in response to
next-header field values. The path that is traced through
the parse graph matches the header sequence.

The parse graph (and hence state machine) within a parser
may be either fixed (hard-coded) or programmable. A fixed
parse graph is chosen at design-time and cannot be changed
after manufacture, while a programmable parse graph is pro-
grammed at run-time.

Conventional parsers contain fixed parse graphs. To sup-
port as many use cases as possible, the chosen parse graph
is a union of graphs from all expected use cases. Figure 3e is
an example of the graph found within a switch—it is a union
of graphs including those in 3a–3d. The union contains 28
nodes and 677 paths. This particular union is referred to as
the “big-union” parse graph within the paper.

4. PARSER DESIGN
This section describes the basic design of parsers. It be-

gins with an abstract parser model, describes fixed and pro-
grammable parsers, details requirements, and outlines dif-
ferences from instruction decoding.

4.1 Abstract parser model
Recall that parsers identify headers and extract fields from

packets. These operations can be logically split into separate
blocks within the parser.

Extracted fields are used to perform forwarding table lookups
in later stages of the switch. All input fields must be avail-
able prior to performing a table lookup. Fields are extracted
as headers are processed, necessitating buffering of extracted
fields until all required lookup fields are available.

Figure 4 presents an abstract model of a parser composed
of header identification, field extraction, and field buffer mod-
ules. Header data is streamed into the parser and sent to
the header identification and field extraction modules. The
header identification module identifies headers and informs
the field extraction module of header type and location in-
formation. The field extraction module extracts fields and
sends them to the field buffer module. Finally the field buffer
accumulates extracted fields, sending them to subsequent
stages within the device once all fields are extracted.

Header identification
The header identification module implements the parse graph
state machine (§3). Algorithm 1 details the parse graph walk
that identifies the type and location of each header.
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Figure 4: Abstract parser model.

Algorithm 1 Header type and length identification

procedure IdentifyHeaders(pkt)
hdr ← initialType
pos← 0
while hdr 6= DONE do

NotifyFieldExtraction(hdr, pos)
len← GetHdrLen(pkt, hdr, pos)
hdr ← GetNextHdrType(pkt, hdr, pos)
pos← pos+ len

end while
end procedure

Field extraction
Field extraction is a simple process: chosen fields are ex-
tracted from identified headers. Extraction is driven by the
header type and location information supplied to the module
in conjunction with a list of fields to extract for each header
type. Algorithm 2 describes the field extraction process.

Algorithm 2 Field extraction

procedure ExtractFields(pkt, hdr, hdrPos)
fields← GetFieldList(hdr)
for (fieldPos, fieldLen)← fields do

Extract(pkt, hdrPos+ fieldPos, fieldLen)
end for

end procedure

Field extraction may occur in parallel with header identi-
fication: extraction is performed on identified regions while
identification is occurring on subsequent regions. No se-
rial dependency exists between headers once the type and
location are resolved, allowing fields to be extracted from
multiple headers in parallel.

Field buffer
The field buffer accumulates extracted fields prior to table
lookups by the switch. Extracted fields are output as a wide
bit vector by the buffer as table lookups match on all fields
in parallel. Outputting a wide bit vector requires the buffer
to be implemented as a wide array of registers. One MUX
is required per register to select between each field output
from the field extraction block.

4.2 Fixed parser
A fixed parser processes a single parse graph chosen at

design-time. The chosen parse graph is a union of the parse
graphs for each use case the switch is designed to support.
The logic within a fixed parser is optimized for the chosen
parse graph.
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Figure 3: Parse graph examples for various use cases.

The design we present isn’t intended to precisely match
the parser within any commercial switch, but it is quali-
tatively representative. As we show in §6.2, the area of a
fixed parser is dominated by the field buffer. The width of
this buffer is determined by the parse graph, and the need to
send all extracted fields in parallel to the downstream match
engine requires it be constructed from an array of registers
and muxes. The lack of flexibility in the design of the buffer
implies its size should be similar across parser designs.

4.2.1 Header identification
The header identification module is shown in Figure 5 and

is composed of four elements: the state machine, a buffer,
a series of header-specific processors, and a sequence resolu-
tion element.

The state machine implements the chosen parse graph,
and the buffer stores received packet data prior to identifi-
cation. One or more header-specific processors exist for each
header type known by the parser—each processor reads the
length and next-header fields for the given header type, iden-
tifying the length of the header and the subsequent header
type.

A header identification block that identifies one header
per cycle contains one header-specific processor per header
type, and the sequence resolution element is a simple MUX.
The MUX selects the processor output corresponding to the

current header type. State machine transitions are deter-
mined by the MUX output.

Multiple headers per cycle can be identified by including
multiple copies of some header processors. Each unique copy
of a header processor processes data from different offsets
within the buffer. For example, a VLAN tag is four bytes
in length; including two VLAN processors allows two VLAN
headers to be processed per cycle. The first VLAN processor
processes data at offset 0, and the second VLAN processor
processes data at offset 4.

At the beginning of a parsing cycle, the parser knows only
the header type at offset zero—processing at non-zero offsets
is speculative. At the end of a parsing cycle, the sequence
resolution element resolves which speculative processors to
use results from. The output from the processor at offset
zero identifies the first speculative processor to use, and the
output from the chosen first speculative processor identifies
the second speculative processor to use, etc.

4.2.2 Field extraction
The field extraction module is shown in Figure 6. A buffer

stores data while awaiting header identification. The fields
to extract for each header type are stored in a table. A sim-
ple state machine manages the extraction process: waiting
for header identification, looking up identified header types
in the extract table, and extracting the specified fields from
the packet.
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4.3 Programmable parser
A programmable parser uses a parse graph that is speci-

fied at run-time. We’ve chosen a state table driven approach
for simplicity of understanding and implementation. State
tables can be easily implemented in RAM and/or TCAM.
Content-addressable memories (CAMs) are associative mem-
ories optimized for searching: all memory locations are searched
in parallel for each input value. A binary CAM matches
every bit precisely; a ternary CAM (TCAM) allows “don’t-
care” bits in entries that match any value.

The abstract parser model introduced earlier can be easily
modified to include programmable state elements as shown
in Figure 7. The key difference is the addition of the TCAM
and RAM blocks. The TCAM stores bit sequences that
identify headers. The RAM stores next state information,
fields to extract, and any other data needed during parsing.
The header identification and field extraction modules no
longer contain hard-coded logic for specific header types,
instead they utilize information from the two memories.
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Figure 7: Programmable parser model.

The header identification module is simplified compared
with a fixed parser, as shown in Figure 8. The module con-
tains state tracking logic and a buffer; all header-specific
logic moves to the TCAM and RAM. The current state and
a subset of bytes from the buffer are sent to the TCAM,
which returns the first matching entry. The bytes sent to
the TCAM may be from contiguous or disjoint locations,
with a total size between one byte and the whole packet, as
determined by the specific design. The RAM entry corre-
sponding to the matching TCAM entry is read and specifies
the next state for the header identification module and the
headers that were matched. The RAM entry may also spec-
ify data such as the number of bytes to advance and the
subset of bytes to extract next.
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Figure 8: Header identification (programmable parser).

The field extraction module is almost identical to the fixed
parser case, except the table containing field locations is
moved out of the module and into the RAM.

4.4 Performance requirements
The parser must operate at line rate for worst-case traffic

patterns in applications such as an Ethernet switch. Failure
to parse at line rate causes packet loss when ingress buffers
overflow.

A single parser instance may be incapable of operating at
line rate—e.g., a parser running at 1 GHz in a 64 × 10 Gb/s
switch must process an average of 640 bits per cycle. In-
stead, multiple parser instances may operate in parallel to
achieve the required aggregate throughput, with each parser
instance processing a different packet.

Many switches today operate with very aggressive packet
ingress-to-egress latency targets. All elements of the switch,
including the parser, must be designed to avoid excessive la-
tency. This implies that packets should be parsed as they are
received rather than buffering the entire packet (or header
region) before commencing parsing.

4.5 Streaming vs. non-streaming operation
Parsers can be categorized as either streaming or non-

streaming. A non-streaming parser receives the entire header
sequence before commencing parsing, whereas a streaming
parser parses as headers are being received. Kangaroo [8] is
an example of a non-streaming parser.

Non-streaming parsers introduce latency as they wait to
receive the header sequence, making them unsuitable for
high-speed, low-latency networks. For example, buffering
125 bytes of headers at 1 Gb/s adds 1 µs of latency, which
is particularly problematic in data center networks. The
advantage of a non-streaming design is that it can access
data anywhere within the header sequence during parsing,
simplifying the design process.



Streaming parsers minimize latency by parsing as data
is received. Data access is restricted to a small window of
recently received data. The designer must ensure that each
header is fully processed before it is flushed from the window.

The fixed and programmable designs above may be imple-
mented as streaming or non-streaming parsers. Our focus is
streaming implementations.

4.6 Comparison with Instruction Decoding
Packet parsing is similar to instruction decoding in mod-

ern CISC processors [15]. Instruction decoding transforms
each CISC instruction into one or more RISC-like micro-
operations (or µops).

Both are two-step processes with serial and non-serial
phases. Parsing phases are header identification and field ex-
traction; instruction decoding phases are instruction length
decode (ILD) and instruction decode (ID).

ILD identifies each instruction’s length. Instruction types
are not required to decode lengths: a uniform structure is
used across an instruction set, thereby allowing the same
length identification operation to be used for all instructions.
ILD is serial: the length of one instruction determines the
start location of the next.

ID identifies the type of each instruction, extracts fields
(operands), and outputs the appropriate sequence of µops.
Multiple instructions can be processed in parallel once their
start locations are known as no further decoding dependen-
cies exist between instructions.

Despite the similarities, several important differences dis-
tinguish parsing from instruction decoding. Header types
are heterogeneous: header formats differ far more than in-
struction formats. A header’s type is identified by the pre-
ceding header as they do not encode their own type, unlike
instructions.

5. PARSE TABLE GENERATION
A discussion of programmable parsers is incomplete with-

out consideration of the parse table entry generation. In this
section we describe parse table entries and present an algo-
rithm and heuristics for minimizing the number of entries.

5.1 Parse table structure
The parse table is a state transition table. As the name

implies, a state transition table specifies the transitions be-
tween states in a state machine. The table contains columns
for the current state, the input values, the next state, and
any output values. A table row specifies the state to tran-
sition to next for a specific current state and input values
combination. A table row exists for each valid state and
input value combination.

The parse table contains columns for the current header
type, lookup values, next header type, the current header
length, and the lookup offsets for use in the next cycle. Each
edge in the parse graph is a state transition, thus each edge
must be encoded as a parse table entry. Figure 9a shows
a section of a parse graph, and Figure 9b shows the corre-
sponding parse table entries.

Rather than using all packet data as input to the parse ta-
ble, only fields indicating the header length and next header
type are input. Inputing a subset of fields greatly reduces
the table width (e.g., only four bytes are required from a
20B IPv4 header). The lookup offsets indicate which fields
to use as inputs to the parse table.

5.2 Efficient table generation
The number of table entries can be reduced by encoding

multiple transitions within a single entry, thereby identifying
multiple headers. The parse graph fragment of Figure 9a can
be encoded as shown in Figure 10a. This new table contains
one less entry than the previous table for the same graph.
Minimizing the entry count for a parse graph is beneficial
since the state table is one of two major contributors to area
(§6.3).

Combining multiple transitions within a table entry can
be viewed as node clustering or merging. The cluster cor-
responding to the first entry in Figure 10a is shown in Fig-
ure 10b.

Table generation algorithm
Graph clustering is an NP-hard problem [5, p. 209]. Many
approximations exist [3, 4, 7] but are poorly suited to this
application.

Kozanitis et al. [8] provide a dynamic programming al-
gorithm to reduce table entries for Kangaroo. Kangaroo
is a non-streaming parser that buffers all header data be-
fore commencing parsing; the algorithm is not designed for
streaming parsers that parse data as it is received. The
algorithm assumes it can access data anywhere within the
header region, but a streaming parser can only use data from
within a small sliding window.

We created an algorithm, derived from Kangaroo’s algo-
rithm, that is suitable for streaming parsers. Inputs to the
algorithm are a directed acyclic graph G = (V,E), the max-
imum number of lookup values k, the required speed B in
bits/cycle, and the window size w. The algorithm clusters
the nodes of G such that i) each cluster requires k or fewer
lookups, ii) all lookups are contained within the window w,
and iii) all paths consume a minimum of B bits/cycle on
average, and iv) the number of clusters is minimized. Equa-
tion 1 shows the algorithm, which uses dynamic program-
ming.

The algorithm is explained as follows. OPT(n, b, o) re-
turns the number of table entries required for the subgraph
starting at node n, with a required processing rate of b
bits/cycle, and with node n starting at offset o within the
window. Clusters(n, o) identifies all valid clusters starting
at node n with the window offset o. The window offset de-
termines the number of headers following n that fit within
the window. Clusters uses the number of lookups k and the
window size w to restrict the size of clusters. Entries(c) re-
turns the number of table entries required for the cluster c.
Successor(c) identifies all nodes reachable from the cluster c
via a single edge. Figure 11a shows a cluster and the cor-
responding successors, and Figure 11b illustrates how the
window w impacts cluster formation.

The recursive call to OPT identifies the number of table
entries required for each successor node. Updated values are
required for b and o. The updated b value reflects the number
of bits consumed in the parsing cycle that processed c. The
updated offset o reflects the amount of data that arrived and
that was consumed while processing c.

Our algorithm is equivalent to Kangaroo’s algorithm if the
window size w is set to the maximum length of any header
sequence. In this case, our algorithm can use any byte within
the header region during any processing cycle.
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Figure 10: Clustering nodes to reduce parse table entries.

OPT(n, b, o) = min
c∈Clusters(n,o)

Entries(c) +
∑

j∈Successor(c)

OPT(j, B + (b−W (c, j)),NewOffset(c, j, o))

 (1)

Improving table generation
The algorithm described above (and Kangaroo’s algorithm)
correctly identifies the minimal set of table entries only when
the parse graph is a tree. Each subgraph is processed in-
dependently by the algorithm, resulting in different sets of
entries being generated for some overlapping sections of sub-
graphs. Figure 12a shows a parse graph fragment in which
subgraphs rooted at nodes C and K share nodes F and G.
Different sets of clusters are generated for the overlapping
nodes for each subgraph, resulting in more entries than re-
quired. Figure 12b shows an alternate clustering in which a
common cluster is generated for the shared region.

Suboptimal solutions occur only when multiple ingress
edges lead to a node. Our heuristic to improve the solution
removes the subgraph S with multiple ingress edges from
the graph G, and solves S independently. A solution is then
found for the graph G− S and the results are merged. The
merged solution is compared with the previous solution and
is kept if it contains fewer edges. The comparison must be
performed as solving the subgraph independently sometimes
increases the number of edges. This process is repeated for
each subgraph with multiple ingress edges. Figure 12c shows
this process on a single subgraph.

6. DESIGN PRINCIPLES
A designer faces choices when designing a parser. Should

the parser be constructed from many slow instances or a few
fast instances? How many bytes per cycle should the parser
process? What is the cost of including a particular header
in the parse graph?

This section explores important parser design choices and
presents principles that guide the selection of those parame-
ters. We begin by describing a parser generator that allows
exploration of the design space. We then present a number

of design principles that we identified through our design
space exploration.

Each parser presented in this section has an aggregate
throughput of 640 Gb/s unless otherwise stated. 640 Gb/s
corresponds to switch chips available today with 64× 10 Gb/s
ports [2, 6, 10, 11]. Multiple parser instances are required to
achieve this aggregate.

6.1 Parser generator
A thorough exploration of the design space requires the

comparison and analysis of many unique parser instances.
To facilitate this, we built a parser generator that generates
unique parser instances for user-supplied parse graphs and
associated parameter sets.

Our parser generator is built using the Genesis [14] chip
generator. Genesis is a tool that generates design instances
using an architectural “template” and a set of application
configuration parameters. Templates consist of Verilog and
Perl—the Perl codifies design choices to programmatically
generate Verilog code.

Our generator produces fixed and programmable parsers
as described in §4.2 and §4.3. Generator parameters include
the parse graph, the processing width, the type (fixed or
programmable), the field buffer depth, and the size of the
programmable TCAM/RAM. The generator outputs syn-
thesizable Verilog. All area and power results were gener-
ated using Synopsys Design Compiler G-2012.06 and a 45 nm
TSMC library.

The parser generator is available for download from: http:

//yuba.stanford.edu/~grg/parser.html

Generator operation
Fixed parser: Two parameters are of particular impor-
tance when generating a fixed parser: the parse graph and
the processing width. The parse graph is specified as a text

http://yuba.stanford.edu/~grg/parser.html
http://yuba.stanford.edu/~grg/parser.html
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file containing a description of each header type. For each
header type, the description contains the name and size of
all fields, an indication of which fields to extract, a mapping
between field values and next header types, and for variable-
length headers, a mapping that identifies header length from
field values. The IPv4 header description is shown in Fig-
ure 13.

ipv4 {
fields {

version : 4,
ihl : 4,
diffserv : 8 : extract,
totalLen : 16,
identification : 16,
flags : 3 : extract,
fragOffset : 13,
ttl : 8 : extract,
protocol : 8 : extract,
hdrChecksum : 16,
srcAddr : 32 : extract,
dstAddr : 32 : extract,
options : *,

}
next_header = map(fragOffset, protocol) {

1 : icmp,
6 : tcp,
17 : udp,

}
length = ihl * 4 * 8
max_length = 256

}

Figure 13: IPv4 header description.

Header-specific processors (§4.2.1) are created by the gen-
erator for each header type. Processors are fairly simple:
they extract and map the lookup fields that identify length
and next header type. Lookup field extraction is performed
by counting words from the beginning of the header; next
header type and length are identified by matching against a
set of patterns.

The generator partitions the parse graph using the target
processing width, as shown in Figure 14. Each region indi-
cates headers that may be seen within a single cycle. Either
one or two VLAN tags may been seen in the shaded region
in the diagram. Header processors are instantiated at the
appropriate offsets for each identified region.

VLAN

VLAN

�

Ethernet

IPv4

IPv4

8B

Figure 14: Parse graph partitioned into processing regions
(red).

Header processing may be deferred to the subsequent re-
gion by the generator to minimize the offsets for a header.
Referring to Figure 14, the shaded region could have in-
cluded the first four bytes of the upper IPv4 header. How-
ever, the parser would then have required two IPv4 proces-



sors: one at offset 0 for the path VLAN→ IPv4, and one at
offset 4 for the path VLAN → VLAN → IPv4.

The field extract table (§4.2.2) is generated using the fields
tagged for extraction in the parse graph description. A table
entry for the IPv4 header would indicate to extract bytes 1,
6, 8, 9, and 12–19. The field buffer is sized to accommodate
all fields that require extraction.

Programmable parser: Parameters important in gen-
erating a programmable parser include the processing width,
the parse table dimensions, the window size, and the num-
ber and size of parse table lookups. A parse graph is not
required to generate a programmable parser since the graph
is specified at run-time.

Parameters are used by the generator to determine com-
ponent sizes and counts. For example, the window size de-
termines the input buffer depth within the header identifi-
cation component and the number of mux inputs used when
extracting fields for lookup in the parse table. Similarly,
the number of parse table inputs determines the number of
muxes required to extract inputs. Unlike the fixed parser,
the programmable parser does not contain any logic specific
to a particular parse graph.

The generator does not generate the TCAM and RAM
used by the parser state table. A vendor-supplied memory
generator must be used to generate memories for the process
technology in use. (Non-synthesizable models are produced
by the parser generator for use in simulation.)

Test bench: The generator produces test benches to ver-
ify the parsers it produces. The parse graph is used to gen-
erate input packets and to verify the output header vec-
tors. The processing width determines the input width of
the packet byte sequences.

6.2 Fixed parser design principles
Our design space exploration reveals that relatively few

design choices have an appreciable impact on parser design—
most design choices have a small impact on properties such
as size and power.

Principle: The processing width of a single parser in-
stance trades area for power.
A single parser instance’s throughput is determined by r =
w×f , where r is the rate or throughput, w is the processing
width, and f is the clock frequency. If the parser throughput
is fixed, then w ∝ 1/f.

Figure 15a shows the area and power of a single parser in-
stance with a throughput of 10 Gb/s. Increasing the process-
ing width increases area as additional resources are required
to process the additional data. Power decreases because
the clock frequency decreases (and decreases faster than the
amount of logic increases).

Additional resources are required for two reasons. First,
the packet data bus increases in width, requiring more wires,
registers, muxes, etc. Second, additional headers can oc-
cur within a single processing region (§6.1), requiring more
header-specific processor instances for speculative process-
ing.

Principle: Use fewer faster parsers when aggregating
parser instances.
Figure 15b shows area and power of parser instances of vary-
ing rates aggregated to achieve 640 Gb/s. The graph shows a
small power advantage of using fewer faster parser over many

slower parsers to achieve the desired aggregate throughput.
Total area is largely unaffected by the instance breakdown.

The rate of a single parser instance does not scale indef-
initely. Area and power both increase (not shown) as we
approach the maximum rate of a single instance.

Principle: Field buffers dominate area.
Figure 15c shows parser area by functional block for several
parse graphs. Field buffers dominate parser area, accounting
for approximately two-thirds of total area.

There is little flexibility in the design of the field buffer:
it must be built from an array of registers to allow ex-
tracted fields to be sent in parallel to downstream compo-
nents (§4.1).

Principle: A parse graph’s extracted bit count deter-
mines parser area (for a fixed processing width).
Figure 15d shows the total extracted bit count versus the
parser area for several parse graphs. All points lie very close
to the trend line. An additional data point is included for
the simple parse graph of Figure 15e. This graph consists of
three nodes but extracts the same number of bits as the big-
union graph. The data point lies slightly below that of the
big-union graph—the small difference is a result of slightly
simpler header identification and field extraction logic.

This principle follows from the previous principle: the
number of extracted bits determines the field buffer depth,
and the field buffer dominates total parser area, thus the
number of extracted bits should approximately determine
the total parser area.

6.3 Programmable parser design principles
The fixed parser design principles apply, with several ad-

ditional principles outlined below.

Principle: Parser state table and field buffer area are
the same order of magnitude.
Figure 15f shows an area comparison between a fixed and a
programmable parser. The fixed design implements the big-
union parse graph. Both parsers include 4 Kb field buffers
for comparison, and the programmable parser includes a 256
× 40 b TCAM. (Lookups consist of an 8 b state value and
2 × 16 b header fields.) The graph reveals that the pro-
grammable design is almost twice the area of the fixed de-
sign.

It is important to note that a fixed parser is sized to ac-
commodate the chosen parse graph, while a programmable
parser must be sized to accommodate all expected parse
graphs. Many resources are likely to be unused when im-
plementing a simple parse graph using the programmable
parser. For example, the enterprise parse graph requires
only 672 b of the 4 Kb field buffer.

The 4 Kb field buffer and the 256 × 40 b TCAM are more
than sufficient to implement all tested parse graphs. The
TCAM and the field buffer are twice the size required to
implement the big-union parse graph.

Observation: Programmability costs 1.5− 3×.
Figure 15f shows one data point, but comparisons across a
range of parser state table and field buffer sizes reveals that
programmable parsers cost between 1.5 and 3 times the area
of a fixed parser (for reasonable choices of table/buffer sizes).
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Figure 15: Design principles revealed via area and power graphs.

Observation: A programmable parser occupies 2% of
die area.
Parsers occupy a small fraction of the switch chip. The
fixed parser of Figure 15f occupies 2.6 mm2, while the pro-
grammable parser occupies 4.4 mm2 in a 45 nm technology.
A 64 × 10 Gb/s switch die is typically 200−400 mm2 today3.

Principle: Minimize the number of parse table lookup
inputs.
Increasing the number of parse table lookup inputs allows
more headers to be identified per cycle, potentially decreas-

3Source: private correspondence with switch chip vendors.

ing the total number of table entries. However, the cost of
an additional lookup is paid by every entry in the table,
regardless of the number of lookups required by the entry.

Table 1 shows the required number of table entries and
the total table size for differing numbers of 16 b lookup in-
puts with the big-union parse graph. The total number of
table entries reduces slightly when moving from one to three
lookups, but the total size of the table increases greatly. The
number of table lookups should therefore be minimized to
reduce total parser area since the parse state table is one of
the two main contributors to area.

In this example, the number of parse table entries in-
creases when the number of lookups exceeds three. This



TCAM
Inputs Entry count Width (b) Size (b)

1 113 24 2,712
2 105 40 4,200
3 99 56 5,544
4 102 72 7,344

Table 1: Parse table entry count and TCAM size.

is an artifact caused by the heuristic to reduce the number
of table entries. The heuristic considers each subgraph with
multiple ingress edges in turn. The decision to remove a
subgraph may impact the solution of a later subgraph. In
this instance, the sequence of choices made when perform-
ing three lookups per cycle performs better than the choices
made when performing four lookups per cycle.

Our exploration reveals that two 16 b lookup values pro-
vides a good balance between parse state table size and the
ability to maintain line rate for a wide array of header types.
All common headers in use today are a minimum of four
bytes, with most also being a multiple of four bytes. Most
4 B headers contain only a single lookup value, allowing two
4 B headers to be identified in a single cycle. We don’t expect
to see many headers shorter than four bytes in the future
since little information could be carried by such headers.

7. RELATED WORK
Kangaroo [8] is a programmable parser that parses mul-

tiple headers per cycle. Kangaroo buffers all header data
before parsing which introduces latencies that are too large
for switches today. Attig [1] presents a language for describ-
ing header sequences, together with an FPGA parser design
and compiler. Switch chips are ASICs not FPGAs, leading
to a different set of design choices. Neither work explores
design trade-offs or extract general parser design principles.

Much has been written about hardware-accelerated regu-
lar expression engines (e.g., [12,16,17]) and application-layer
parsers (e.g., [13, 18]). Parsing is the exploration of a small
section of a packet directed by a parse graph, while regu-
lar expression matching scans all bytes looking for regular
expressions. Differences in the data regions under consid-
eration, the items to be found, and the performance re-
quirements lead to considerably different design decisions.
Application-layer parsing frequently involves regular expres-
sion matching.

Software parser performance can be improved via the use
of a streamlined fast path and a full slow path [9]. The fast
path processes the majority of input data, with the slow
path activated only for infrequently seen input data. This
technique isn’t applicable to hardware parser design since
switches must guarantee line rate performance for worst-case
traffic patterns; software parsers do not make such guaran-
tees.

8. CONCLUSION
The goal of this paper was to understand how parsers

should be designed. To aid in this, we built a parser genera-
tor capable of producing fixed and programmable parsers,
which we used to generate and study over 500 different
parsers. A number of design principles were identified af-
ter studying the trade-offs between the generated parsers.

Our study reveals that area is dominated by the field
buffer for fixed parsers, and the field buffer and parse ta-
ble combined for programmable parsers. Multiple parsers
can be aggregated to achieve a higher throughput: a small
number of fast parsers provides a small power benefit (but
no area benefit) over a large number of slow parsers. Pro-
grammability can be provided inexpensively: programma-
bility doubles parser area, equating to an increase in total
chip area from 1% to 2%.
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