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Abstract—Cloud computing systems fail in complex and unexpected ways, due to unexpected combinations of events and interactions
between hardware and software components. Fault injection is an effective means to bring out these failures in a controlled
environment. However, fault injection experiments produce massive amounts of data, and manually analyzing these data is inefficient
and error-prone, as the analyst can miss severe failure modes that are yet unknown. This paper introduces a new paradigm (fault
injection analytics) that applies unsupervised machine learning on execution traces of the injected system, to ease the discovery and
interpretation of failure modes. We evaluated the proposed approach in the context of fault injection experiments on the OpenStack
cloud computing platform, where we show that the approach can accurately identify failure modes with a low computational cost.
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1 INTRODUCTION

Cloud computing has grown rapidly in recent years. It
is well known that failures in these systems might have
huge financial implications for the companies involved and
their customers. Unfortunately, cloud-computing systems
fail in complex and unexpected ways. For instance, recent
outages reports showed that failures escape fault-tolerance
mechanisms, due to unexpected combinations of events and
of interactions among hardware and software components,
which were not anticipated by the system designers [1],
[2]. These issues become elusive due to the (large) scale of
systems (with often thousands of nodes), their heterogene-
ity, and the high variability of workloads. In this context,
understanding how the system can fail (i.e., its failure modes)
is a crucial activity to define proper recovery strategies.

Fault injection has been advocated as an effective means
to analyze failures of distributed systems in a controlled en-
vironment, by forcing faults and exceptional conditions. In
the current approaches, analysts write failure specifications
before the experiments. Then, they look for occurrences of
these failures within the experimental data [3]. For example,
the most sophisticated approaches check formal specifica-
tions over events and outputs, by using finite state machines
[4], temporal logic predicates [5], relational logic [6], and
special-purpose languages [7]. Since these specifications are
mostly based on prior knowledge and experience of system
designers about failures, they are not meant for discovering
new, unknown failure modes of a distributed system, which
are missed by the failure specifications. Moreover, writing
failure specifications is a time-consuming and cumbersome
task, which makes fault injection less applicable in practice.

In this work, we introduce a new paradigm to data
analysis for fault injection experiments, which we call fault
injection analytics. Our approach combines distributed tracing
to gather raw failure data, and unsupervised machine learning
to discover the failure modes of the injected system.

The approach aims to make easier, for human analysts,

the identification of the failure modes among large amounts
of data produced by fault-injection experiments. When con-
sidering complex cloud systems, it is typical to perform a
large number of experiments (e.g., several thousand), since
these systems include tens of processes and nodes and mil-
lions of lines of source code in which faults can be injected.
Moreover, for each experiment, the system generates high
volumes of log files (up to hundreds of MBs) and long
execution traces (e.g., thousands of events per trace). Thus,
it is not feasible in practice for the analyst to analyze all of
these data in a reasonable amount of time.

The paper brings the following contributions.

1) A novel anomaly detection algorithm to find unusual
events and interactions (i.e., symptoms of failures) that
occurred in fault injection experiments. We designed the
algorithm to be robust to noise in cloud systems, caused
by non-determinism of timing and order of events, and to be
quickly trained only a small set of fault-free executions of the
distributed system, by using a variable-order Markov Model.
Anomaly detection can aid human analysts at scrutinizing
more efficiently the events that occurred during an experi-
ment, by discarding uninteresting events, e.g., unusual, yet
benign orderings of events caused by non-determinism.

2) An unsupervised method to classify the failure
modes, which combines clustering with the proposed
anomaly detection algorithm in order to automatically iden-
tify the failure classes among large sets of fault injection
experiments. This approach allows human analysts to find
recurring failure patterns and to add new fault-tolerance
mechanisms for them. It is sufficient for the analyst to only
analyze one or a few experiments from the same class, thus
making the analysis more efficient.

3) An experimental case study on the widespread Open-
Stack cloud management platform [8], [9]. We targeted the
three main sub-systems of OpenStack (Nova, Neutron, Cin-
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Fig. 1: Overview of the proposed approach.

der) with fault injection under several scenarios. We found
that anomaly detection can pinpoint anomalous events with
a high hit rate, and can halve the number of false alarms
due to non-determinism. Moreover, the anomaly detection
algorithm noticeably improves the accuracy of clustering at
identifying failure modes.

In our previous work [10], [11], we implemented a basic
toolkit for collecting and visualizing distributed traces, and
we performed a preliminary analysis to assess the feasibility
of anomaly detection. This paper extends previous work
by presenting an extensive experimental evaluation, and
by addressing the previously-unexplored problem of failure
mode clustering.

This work is at the intersection of fault injection, machine
learning (ML), and cloud computing. Most of the studies in
these fields applied machine learning during the operational
phase of the lifecycle of cloud systems, in order to detect,
predict, and diagnose failures in cloud infrastructures [12]–
[16]. These studies applied fault injection to validate the
effectiveness of novel anomaly detection techniques. Other
studies adopted machine learning to generate functional
and fault injection tests [17]. Our approach is unique since
we apply machine learning before a system is put in oper-
ation, to ease the analysis and the interpretation of huge
amounts of data produced by fault injection, thus, the name
fault injection analytics. Existing ML approaches could not
be applied for this goal, since they are expected to be
trained with relatively-large training datasets to achieve
high accuracy. In the testing phase, such large datasets are
not affordable, due to the characteristics of modern software
development, with a high frequency of releases and limited
time for testing. Developers typically run nightly automated
tests, which need to complete within a few hours in or-
der to meet release deadlines. Therefore, we designed our
proposed approach to be applicable with a low amount of
training traces.

In the following, Section 2 presents the proposed ap-
proach; Sections 3 and 4 experimentally evaluate anomaly
detection and the clustering of failure modes; Section 5
discusses related work; Section 6 concludes the paper.

2 PROPOSED METHODOLOGY

Our approach analyzes the cloud-computing system as a set
of black-box communicating components, without leveraging
any a priori information about their internals (e.g., the ap-
proach is unaware of invariants and pre-/post-conditions in
the system). Thus, we apply unsupervised machine learning
on execution traces to identify failure patterns.

The approach focuses on messages exchanged in the
distributed system during the fault injection experiments.
In general, messages are the key observation point for
debugging and verification of distributed systems, since
they reflect well the activity of the system [18]. For example,
nodes perform work when they receive messages to provide
a service to another node (e.g., through remote procedure
calls), and reply with messages to provide the response and
results; moreover, nodes use messages to asynchronously
notify a new state to other nodes in the system. Our ap-
proach is plugged into the public communication interfaces,
such as REST APIs and message queues, based on off-the-
shelf protocols and libraries, and it collects raw traces of
messages exchanged among the components.

An important design objective is to make the approach
robust to non-determinism in distributed systems, where the
timing and the order of messages can unpredictably change
(e.g., due to sporadic delays) regardless of the occurrence
of failures. Thus, there is a need to discriminate between
variations in the message order due to failures and by “be-
nign” variations caused by non-determinism. To mitigate
this uncertainty, we adopt a probabilistic model for anomaly
detection that screens out the benign variations.

Another design objective is to use as few training sam-
ples as possible. Our approach trains a model by executing
the system several times. However, since the execution time
to run a cloud workload can be significantly long (e.g., in
our experiments, a single run takes tens of minutes), it is
mandatory to keep these runs at a minimum to make the
approach affordable in practice.

Fig. 1 shows an overview of the proposed approach.
We first instrument communication APIs (step 1 ). Then,
we exercise the system with a workload, and with no-
fault injected (step 2 ). We record a trace of all messages
exchanged among the components, and between the com-
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Fig. 2: Detailed workflow of the anomaly detection.

ponents and the clients. Since no fault is injected, such trace
is denoted as fault-free trace. We generate several fault-free
traces, by running the workload several times. The fault-free
traces are used as a training set to create a model of normal
behavior (step 3 ). We adopt a probabilistic model to account
for the natural variability of the interactions (e.g., different
ordering, type, etc.) in the training traces.

We remark that having a representative experimental
environment (i.e., matching the real-world operational en-
vironment, in terms of user workload, hardware, etc.) is
a problem not limited to our approach, but it is a more
general problem for fault injection [19]. Our goal is to
facilitate the analysis of fault injection data, regardless of
how well the data matches the operational environment
(e.g., by architecting a realistic workload, by using a realistic
configuration, etc.).

Once the model has been trained, the approach per-
forms the fault injection experiments (step 4 ). We focus
on injecting one fault per experiment, as injecting multiple
faults concurrently is still an open research problem and
not yet adopted in real projects, due to the high number
of combinations among multiple faults. This step produces
fault-injected traces (also faulty traces), one per experiment.
The fault-injected traces are then analyzed using the previ-
ously defined normal behavior model to identify anomalies
(step 5 ). Since all the executions (i.e., fault-free and fault-
injected ones) are performed under the same conditions (i.e.,
same software and hardware configuration, same workload,
etc.), any deviation between a fault-injected trace and the
probabilistic model is attributed to the injected fault and
it is considered as an anomaly. The results of anomaly
detection (i.e., the deviations between a fault-injected trace
and the model) are the input of the clustering phase (step
6 ). This step aims to partition fault injection experiments

in a number of groups such that experiments belonging
to the same group exhibit the same anomalies (i.e., failure
mode). Finally, the failure modes are visualized to the human
analyst (step 7 ), by displaying the distribution of failure

modes across all the experiments. Moreover, the user can
focus on a specific experiment, by visualizing the anomalies
of the execution over timelines.

The anomaly detection algorithm constitutes the core of
the proposed approach. Figure 2 shows a detailed flowchart
of this algorithm. In the rest of this section, we discuss the
phases of the workflow and present an example of fault
injection analytics of a real system.

2.1 Instrumentation

The first step of the approach consists of instrumenting the
system under test, to collect the messages exchanged by
nodes during the experiments [20]. To this purpose, our
approach wraps the communication APIs that are invoked
by every component in the system.

This instrumentation is a form of “black-box tracing”,
since it does not require any knowledge about the inter-
nals of the system under test, but it requires only basic
information about the communication APIs being used. This
approach is especially suitable when testers may not have a
full and detailed understanding of the entire cloud platform.
Moreover, this kind of distributed tracing is already familiar
to developers for debugging, performance monitoring and
optimization, root cause analysis, and service dependency
analysis [21], [22].

The information recorded by the instrumented APIs
includes the time at which a communication API has been
called and its duration; the component that invoked the
API (message sender) and the remote service that has been
requested through the API call (service API). Moreover, we
record information about the response message (e.g., the
status line and the message body in an HTTP response,
the body of the message, etc.). We refer to the calls to
communication APIs (i.e., the messages collected during the
experiments) as events. Thus, the execution of the system
generates a trace of events that are ordered with respect to
the timestamp given by the event collector.
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Our anomaly detection technique is designed to be tol-
erant to the non-determinism in the ordering of the events
(e.g., due to random messaging delays) by using a proba-
bilistic technique, which is discussed in the Section 2.4.

2.2 Data collection
Once the system has been instrumented, it is executed with
the workload, collecting traces without injecting any fault
(fault-free traces). Such fault-free traces (also known as
golden runs or reference runs) have been adopted for fault in-
jection experiments in small systems (e.g., embedded ones),
by using the traces as a reference to understand how the
fault-injected system derailed from a proper execution [23]–
[25]. We generalize this approach to support more complex
systems, such as cloud computing ones and use unsuper-
vised machine learning to discover unknown failure modes.
In the next steps, we will use fault-free traces to train
a model of “normal” behavior of the distributed system,
which we will use as a reference for analyzing failures. The
model takes into account the variability of events across
executions of the system (e.g., differences in the relative
ordering of messages). Then, the system is executed again
under fault injection, using the same workload of fault-free
runs. For each experiment, we inject a different fault, and we
collect a trace (faulty trace) of the events that are generated
during the execution. Thus, we obtain several traces, one
per experiment.

To recognize events that are generated by background
and asynchronous activities, which are independent of the
workload, we collect a third type of trace, namely (idle
trace), which contains events occurring in the distributed
system not caused by the workload or by the injected
faults. Indeed, if these events are not removed from our
analysis, they might be erroneously identified as (false)
anomalies. Examples of such events are garbage collection,
resource monitoring, updating database indexes, etc., and
they can be triggered at arbitrary times. Another example
in the OpenStack cloud computing platform is the events
generated by the invocation of the method sync instance info
of the Nova Scheduler component: this method is periodically
called by compute nodes to notify the UUIDs of instances
on the hosts, and it is not related to the workload.

To identify these events, we perform a separate execution
of the cloud system, by leaving it in idle state (i.e., no
workload is applied) for several minutes before and after
a fault-free execution. We record into the idle trace any
background message collected during these periods. Then,
we remove such background events from both the fault-free
and faulty traces.

2.3 Trace pre-processing
Each event in the system is described by the couple of
<message sender, service API>. In our context, the service
API represents the name of the invoked method (e.g., create
volume), whereas the message sender is the name of the sub-
system invoking the method (e.g., Cinder). The proposed
approach represents the events within a trace with unique
identifiers (i.e., symbols), so that two events of the same type
are identified by the same symbol. Besides the specific event,
we also consider the response status in the assignment of the

symbols. For example, if the event is an HTTP message, we
differentiate among invocations of the same GET method
with different status codes (e.g., 200 for success, and 404
for failure). Events in a trace are ordered by their time of
collection, and then converted into sequences of symbols: each
symbol represents a specified couple<message sender, service
API>, and the response status.

Once all execution traces have been converted into se-
quences, before resorting to anomaly detection, we perform
preliminary filtering of events that do not represent anoma-
lies. We identify events that do not exhibit any difference
between the fault-injected and the fault-free executions, i.e.,
events that occur regardless of the injected fault. Since these
events are not related to the failure modes, they can be
discarded from the analysis. To identify these events, we
look for overlapping symbols (i.e., same type, same order)
between the faulty sequences and the fault-free ones.

The approach identifies overlapping symbols between
the sequences, by computing the longest common sub-sequence
(LCS) of the sequences [26]: the LCS is a subset of symbols
that are present in both sequences in the same order, and
that can be obtained by removing (a minimal number of)
symbols from the original sequences. This kind of problem
is recurrent in computer science, such as in bioinformatics
and source code versioning (e.g., in the diff Unix tool), and
can be solved with efficient algorithms [27], [28]. The ap-
proach identifies a selected fault-free trace that is most similar
to the fault-injected trace, i.e., the one with most overlapping
symbols, by computing the normalized length of the LCS
(nLCS) between the faulty trace and the fault-free ones,
where nLCS(x, y) = |LCS(x,y)|√

lx·ly
, and where lx and ly are the

lengths of the individual strings x and y. Then, it generates
a list of differences (i.e., non-common events) between the
selected fault-free trace and the faulty trace. These non-
common events are further analyzed with a probabilistic
model, to tell which ones are indeed anomalies.

2.4 Probabilistic modeling
The analysis performed with LCS still does not to suffice
to identify failure-related events, since the differences in
the faulty trace can be either actual symptoms of a failure
(i.e., real anomalies, caused by the injected fault); or non-
anomalous events (i.e., events that may, or may not occur
in fault-free conditions, or may occur in a different order,
due to non-deterministic behavior). The latter type of events
may lead to false alarms, which may divert the attention
of the human analyst. To overcome inaccuracies, we use a
probabilistic model, in cascade after the trace analysis with
LCS, to evaluate whether a non-common event is indeed an
anomaly.

In particular, our approach uses a Markov model to es-
timate the probability of an event. Markov modeling is a
popular approach for the probabilistic analysis of sequences
of symbols (e.g., to predict the probability of a future sym-
bol), such as in bioinformatics [29], data compression [30],
and text and speech recognition [31]. Markov models do not
require massive datasets to be trained, which is instead the
case for other anomaly detection techniques like neural net-
works. The size of the training set is an important concern
in our context, as developers have a limited time budget to
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spend for fault injection testing [5]. Since executions can take
several hours in commercial-grade systems, we need to train
the model with a minimal number of fault-free executions.

Among Markov models, Hidden Markov Models (HMMs)
are a powerful and very popular technique among re-
searchers in dependable computing, such as for anomaly
detection and fault diagnosis purposes in critical infrastruc-
tures [32]–[35]. HMMs separate observations (e.g., events)
from the (hidden) states of the underlying stochastic process
that generates the observations, since in many systems the
current state is unknown for an external observer, and must
be indirectly inferred from events [31]. However, we found
that HMMs are not suitable for our anomaly detection
problem. The main issue with HMMs is the high flexibility
of the model, in terms of the high number of parameters
that need to be tuned in the training phase (e.g., the number
and probabilities of the hidden states). During the training
phase, we cannot rely on a human analyst to annotate the
events with the corresponding hidden state of the system,
as it would be exceedingly time-consuming and error-prone
for complex distributed systems with many unknown states.
Instead, training HMMs with unannotated traces signifi-
cantly increases the required size of the training set (e.g.,
up to thousands of traces using the EM algorithm) [35].
Another issue is the zero frequency problem, that is, modeling
the probability of events with no occurrences in the training
set, which is often the case in anomaly detection [36].

Therefore, we opt for a non-hidden Markov model where
the states are a direct representation of the observed events.
However, a simple Markov chain still does not suffice for
our purposes, since the probability of the next state (i.e.,
the next event of the sequence) would only depend on the
current state (i.e., the memoryless property). In general, this
is not the case for event sequences that can be generated by
a distributed system; in practice, the probability of an event
is highly correlated with the history of the previous events.
For example, in the OpenStack platform, the occurrence of
an event representing a “volume attach” operation must be
preceded by a sequence of several preliminary operations
on the volume and on the instance to be attached (e.g., an
instance must have been created and initialized).

Ultimately, we opted for higher-order Markov models,
where the probability of events takes into account the his-
tory of the previous states of a sequence. In particular, since
we do not have a fixed cardinality for the conditioning set
of events in history, we adopt Variable-order Markov Models
(VMMs). VMMs estimate the probability that a symbol σ
can appear after a sequence s (named context), by counting
the joint occurrences of σ and s in the training sequence to
build the predictor P̂ , for variable cardinalities of s [37].

In this work, we use the notation defined by Begleiter
et al. [37]. Let Σ be a finite alphabet. A learner is given a
training sequence xn1 = x1x2...xn, where xi ∈ Σ and xixi+1

is the concatenation of xi and xi+1. Based on xn1 , the goal is
to learn a model P̂ that provides a probability assignment
for any future outcome given some past. Specifically, for
any context s ∈ Σ and symbol σ ∈ Σ, the learner should
generate a conditional probability P̂ (σ|s). The accuracy of
the predictor P̂ (·|·) is typically measured by its average log-
loss l(P̂ , xT1 ) with respect to a test sequence xT1 = x1...xT :

`(P̂ , xT1 ) = − 1

T

T∑
i=1

log P̂ (xi|x1...xi−1) (1)

There exist many algorithms in the scientific literature
for training and applying VMMs [37]. In particular, one
important aspect that characterizes VMM algorithms is how
they handle the zero-frequency problem (i.e., sequences
with zero occurrences in the training set). If the probability
is estimated by simply counting the number of occurrences,
the unobserved events would get a zero probability, with
an infinite log-loss. This problem is especially relevant in
the case of long sequences with a rich alphabet, where the
training set is “sparse” and only covers a tiny part of the
multi-dimensional space of the sequences. The sequence of
events generated by a distributed system also falls in this
condition.

Our approach uses the Prediction by Partial Matching,
Method C (PPM-C) lossless compression algorithm [38],
which is a variant of the original PPM algorithm published
in 1984 by Cleary and Witten [39] that includes a set of
improvements proposed by Moffat [40]. PPM is a statistical
modeling technique that builds a predictor by combining
several fixed-order context models [38], with different val-
ues of the order k, ranging from zero to an upper bound D
(i.e., the maximal order of the Markov model) [41].

All PPM variants manage the zero frequency problem
by using two mechanisms, called escape and exclusion. For
each context s of length k ≤ D, the algorithm allocates a
uniform probability mass P̂k(escape|s) (which varies across
PPM variants) for all symbols that did not appear after
the context s in the training sequence. The remaining mass
1 − P̂k(escape|s) is distributed among all other symbols
that have non-zero counts for this context. Using the escape
mechanism, the conditional probability is given by [37]:

P̂ (σ|snn−D+1) =

{
P̂D(σ|snn−D+1), †

P̂D(escape|snn−D+1) · P̂ (σ|snn−D+2), ‡

(2)

† if snn−D+1σ occurred in the training sequence ‡ otherwise

where P̂D(·|·) is a conditional probability with fixed-order
D, which can be calibrated according to frequency counts
from the observed sequences in the training set.

The exclusion mechanism is used to tune the probability
estimates. This probability is inversely proportional to the
size of the alphabet (for example, the probability of the
escape is 1/|Σ| in the case of an empty context s = ε), but the
PPM-C introduces a correction. If a symbol σ appears after
the context s of length k ≤ D, it is redundant to consider
σ as part of the alphabet when computing P̂k(·|s′), for all
s′ suffix of s. Therefore, the estimates P̂k(·|s′) are corrected
by considering a smaller alphabet of observations [37]. For
more information on PPM and the Method C variant, we
refer the reader to the work by Begleiter et al. [37].

We set the maximum order D of the VMMs to 5. Indeed,
it has been found that PPM achieves the best compression
for this choice and that its accuracy saturates when the
context is increased beyond this value [38].
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2.5 Classification of anomalies
The ultimate result of anomaly detection is to classify the
events into:

• Common events: Events that occurred both in the
faulty trace and in at least one of the fault-free traces,
with the same type and order.

• Anomalous events: Differences between the faulty
trace and the fault-free traces. They are further clas-
sified into:

– Spurious events: Events that would normally
not occur under fault-free conditions.

– Missing events: Events that occur in fault-
free conditions, but do not occur under fault
injection.

As discussed in § 2.3, we first use the LCS algorithm to
identify common events of a faulty trace, by comparing it
to a selected fault-free trace (i.e., one of the fault-free traces
in the training set, with the highest similarity to the faulty
trace). Then, we further analyze the LCS differences (i.e.,
non-common events according to the LCS) using the VMM
model (§ 2.4). We train the VMM with a set of n−1 fault-free
traces, by using all the fault-free traces except the selected
fault-free trace. Then, we apply the VMM to compute the
probabilities of LCS differences, to determine whether they
are indeed anomalous, as follows:
B Analysis of LCS differences that only appear in the
fault-injected trace. The fault-injected trace takes the role
of the test sequence for the VMM. We focus on symbols of
the test sequence that were highlighted as differences in
the previous LCS analysis. The goal is to confirm whether
these symbols are actually unlikely events, not only with
respect to the selected fault-free trace (i.e., the one used
for determining the LCS) but also according to the whole
set of fault-free traces in the training set. For each event
not included in the LCS, we compute the probability of the
event according to the VMM. If the probability is lower than
a threshold εSPURIOUS, then the symbol has a low likelihood
to appear in that position of the sequence; thus, the VMM
confirms that the symbol represents a spurious anomalous
event. Otherwise, the event is considered non-anomalous.
B Analysis of LCS differences that only appear in the
selected fault-free trace. The selected fault-free trace takes the
role of the test sequence for the VMM. As for the previous
step, we focus on symbols of the test sequence that were
highlighted as differences in the previous LCS analysis. In
this case, we consider the events that only appear in the
selected fault-free trace: therefore, from the point of view of
the fault-injected trace, these events represent omissions. This
step confirms whether these events are likely, and thus their
omission should be considered an anomaly. The approach
applies the VMM to the events that only appear in the fault-
free trace, by computing the probabilities of such events
according to the remaining fault-free traces in the dataset.
If the probability of the event is higher than a threshold
εMISSING, then there is a high likelihood for the symbol to
be in that position of the sequence. Therefore, the fact that
the event is missing in the fault-injected trace should be
considered an anomaly, and thus it is marked as a missing
anomalous event. Otherwise, if the probability of the event

is less than the threshold, then the lack of such an event
from the fault-injected trace is considered non-anomalous.

We remark that even if the two steps perform similar
comparisons, the results obtained by them are different
and complementary. If the fault-injected trace contains an
anomalous event with a low probability value according to
the VMM, then it is confirmed as spurious. Similarly, if the
fault-injected trace does not contain an event with a high
probability value in the selected fault-free trace, then the event
is confirmed to be an omission. A practical approach is to
select conservative thresholds (e.g., εSPURIOUS = 20% and
εMISSING = 80%), so that the VMM can filter out most of
the LCS differences that are not actually spurious/missing
events; and to leave to the human analyst the decision about
the uncertain events. Therefore, the sensitivity of the proba-
bilistic model is an important factor that makes it applicable
in practice. We further analyze it in our experiments.

2.6 Failure clustering
The last step of our approach is to perform clustering to
group the experiments into classes, where each class rep-
resents a distinct failure mode of the system under test. In
general, clustering algorithms reveal hidden structures in a
given data set, by grouping “similar” data objects together
while keeping “dissimilar” data objects in separated groups
[42]. In our context, the clustering of the experiments helps
the human analyst in the identification of the failure modes
and in analyzing the large amount of data of the fault-
injection campaigns (hundred of MB of logs, thousand of
traces and experiments, etc.).

To apply the clustering, the approach represents each
fault-injection experiment with a vector of features. The
number of features is twice the number d of unique events
(i.e., the symbols in the dictionary of events) that were
traced during the experiments. Given that anomalies can be
classified as spurious or missing, we include in the vector
two features for each symbol: the number of times that the
symbol occurred as a spurious anomaly (the first d features),
and the number of times that the symbol occurred as a
missing anomaly (the last d features). For example, let us
suppose that the dictionary consists of three different sym-
bols, A,B,C (i.e., a dictionary with three unique events).
Let be xi = [1, 1, 0, 0, 2, 3] the vector associated to the faulty
trace collected during the ith experiment. These features can
be interpreted as follows:

• Anomaly detection identified two spurious events,
one for the symbol A and one for the symbol B.

• Anomaly detection identified five missing events,
two for the symbols B and three for the symbol C.

This representation holds concise information about the
anomalies of the experiments. Spurious events are indica-
tors of wrong interactions that happened in the distributed
system during the experiment while missing events point
out actions that were not performed. We apply a clustering
algorithm on these vectors, to group the experiments that
exhibit similar anomalies. Thus, clusters describe distinct
failure modes exhibited by the system. Our approach is
not bound to a specific clustering algorithm; we rely on the
anomaly detection algorithm to detect the symptoms of the
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failures with high accuracy, in order to favor the quality of
the failure clusters.

2.7 Visualization
Visualizing the execution of distributed systems is a key
step to enable designers to debug failures, yet summarizing
information in an effective way is an open research problem
[7], [43]–[45]. Therefore, we designed a dashboard to lever-
age unsupervised machine learning to obtain summarized
information about failure modes, in order to present them in
a simplified way. The dashboard does not require the user to
manually configure the failure modes, thus supporting the
analysis and discovery of unknown failure modes.

Besides providing basic statistics about the experiments
(e.g., number, duration), the first feedback for the user is the
distribution of failure modes across the fault injection experiments
(Fig. 3a). Both the categories (i.e., the failure modes) and
their sizes (i.e., the number of experiments) are automat-
ically generated through unsupervised machine learning.
In the example of Fig. 3a, based on fault injections on the
OpenStack platform, every failure mode is labeled with a
summary of the spurious and omission anomalies occurred
in that failure mode. The dashboard groups the experiments
into few classes (one per failure mode) to simplify the
analysis of failure modes. The user can quickly get a better
understanding of each failure mode, by only looking at one
or a few experiments for that class.

The dashboard also supports the user at inspecting
anomalous events that occurred within individual experiments.
When the user selects an experiment, the dashboard dis-
plays the timespans of RPCs (e.g., message queues) and
REST API calls. Timespans are divided with respect to
the origin of the messages, such as the Nova, Neutron,
and Cinder sub-systems and external clients in the case of
OpenStack. The dashboard divides interactions among three
groups, as defined in § 2.5: common, missing, and spurious
events. In the example shown in Fig. 3b, the spurious
events are exceptions raised by two REST API calls. The
missing events are internal calls to initialize a new VM
instance and to attach virtual resources to it. Due to the
injected fault in the Nova sub-system, it did not complete
the initialization of the instance, leaving it in an inactive
state, and propagated the problem to Neutron and Cinder.
The visualization supports analysts at reasoning about how
to best handle faults, e.g., when in the flow of interactions,
and whether to manage it in Nova, Neutron, and/or Cinder.

3 EVALUATION OF ANOMALY DETECTION

We evaluate our anomaly detection algorithm with ex-
periments on the OpenStack cloud management platform,
which is a relevant case of a large and complex distributed
system.

3.1 Experimental setup
We injected faults into the three most important sub-systems
of OpenStack [46], [47]: (i) Nova, which provides services
for provisioning instances (i.e., VMs) and handling their life
cycle; (ii) Neutron, which provides services for provisioning
virtual networks, including resources such as floating IPs,

network interfaces, subnets, and routers; and (iii) Cinder,
which provides services for managing block storage re-
sources. Each of these three sub-systems represents by itself
a complex system, and they are developed as independent
projects by distinct and dedicated teams [48], [49]. We
targeted OpenStack version 3.12.1 (release Pike), deployed
on Intel Xeon servers (E5-2630L v3 @ 1.80GHz) with 16
GB RAM, 150 GB of disk storage, and Linux CentOS v7.0,
connected through a Gigabit Ethernet LAN.

In our tests, we injected faults during the interactions
among OpenStack components. We targeted the internal
APIs used by OpenStack components for managing in-
stances, volumes, networks, and other resources. The in-
jected faults represent exceptional cases, such as a resource
that is not found or unavailable, a processing delay when re-
trieving a resource, or an incorrect value caused by the user,
the configuration, or a bug inside OpenStack. In particular,
we focus on the following types of faults:

• Throw exception: An exception is raised on a
method call, according to pre-defined, per-API list
of exceptions.

• Wrong return value: A method returns an incorrect
value. The wrong return value is obtained by cor-
rupting the targeted object, depending on the data
type (e.g., by replacing an object reference with a
null reference, or by replacing an integer value with
a negative one).

• Wrong parameter value: A method is called with
an incorrect input parameter. Input parameters are
corrupted according to the data type, as for the
previous point.

• Delay: A method is blocked for a long time before
returning a result to the caller. This fault can trigger
timeout mechanisms inside OpenStack, and cause
stalls.

We performed three distinct fault injection campaigns, in
which we applied three different workloads:

• New deployment (DEPL): This workload configures
a new virtual infrastructure from scratch, by stimu-
lating all of the target sub-systems (i.e., Nova, Cinder,
and Neutron) in a balanced way. This workload
creates VM instances, along with key pairs and a
security group; creates and attaches volumes to an
existing instance; creates a virtual network and a
subnet, with a virtual router; assigns a floating IP to
connect the instances to the virtual network; reboots
the instances, and then deletes them.

• Network management (NET): This workload in-
cludes network management operations, to stress
more the Neutron sub-system and virtual network-
ing. The workload initially creates a network and
a VM and generates network traffic via the public
network. After that, it creates a new network with no
gateway, brings up a new network interface within
the instance, and generates traffic to check whether
the interface is reachable. Finally, it performs a router
rescheduling, by removing and adding a router re-
source.

• Storage management (STO): This workload per-
forms storage management operations on instances

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on September 27,2020 at 09:40:09 UTC from IEEE Xplore.  Restrictions apply. 



1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3025289, IEEE
Transactions on Dependable and Secure Computing

8

21%

17%

4%

6%

52%

Spurious anomalies:
+ Nova Client, POST 409 [REST API]
+ Nova Client, POST 400 [REST API]
+ q_plugin. get_active_network_info [MQ RPC]

Omission anomalies:
- Nova Client, POST 200 [REST API]
- Nova Compute, build_and_run_instance [MQ RPC]
- Cinder Volume, attach_volume [MQ RPC]

(a) Distribution of failure modes.

False 
positive

Propagation chain 
(with possible false 

positives)

Common 
Events

Missing 
Events

Spurious 
Events

Non-anomalous 
events 

(volume available)

Time 
(seconds)

REST API

Neutron

Nova

Cinder

REST API

Neutron

Nova

Cinder

REST API

Neutron

Nova

Cinder

User-perceived service 
exceptions

(Cinder sub-system, after 
several minutes)

Fault injection 
(exception in Nova)

(b) Anomalous events in a specific fault injection experiment.

Fig. 3: Example of fault injection data analysis.

and volumes, to stress more the Nova and Cinder
sub-systems. In particular, the workload creates a
new volume from an image, boots an instance, then
rebuilds the instance with a new image (e.g., as it
would happen for an update of the image). Finally, it
performs a cleanup of the resources.

All the workloads invoke the OpenStack APIs pro-
vided by the Nova, Cinder, and Neutron sub-systems. We
designed the workloads to cover several sub-systems of
OpenStack and several types of virtual resources, similar
to integration test cases from the OpenStack project [50], to
point out potential failure propagation effects across sub-
systems.

During the execution of the workload, any exception
generated by API calls (API Errors) is recorded. In-between
calls to service APIs, the workload also performs assertion
checks on the status of the virtual resources, to point out
failures of the cloud management system. These checks
assess the connectivity of the instances through SSH and
query the OpenStack API to ensure that the status of the
instances, volumes, and the network is consistent with the
expectation of the tests. In our context, assertion checks
serve as ground truth about the occurrence of failures during
the experiments. These checks are valuable to point out the
cases in which a fault causes an error, but the system does
not generate an API error (i.e., the system is unaware of the
failure state) [51].

We consider an experiment as failed if at least one API
call returns an API error or if there is at least one assertion
check failure. Before every experiment, we clean-up any
potential residual effect from the previous experiment, to
be able to relate failure to the specific fault that caused it.
We re-deploy the cloud management system, remove all
temporary files and processes, and restore the OpenStack
database to its initial state.

We developed an automated tool to scan the source code
of Nova, Cinder, and Neutron to find all the injectable API
calls, and to introduce faults by mutating the calls [52]. For
each workload, we identified the injectable locations that
were covered by the workload itself, and we performed one
fault injection test per covered location. In total, we per-
formed 2,538 fault injection experiments, and we observed
failures in 1,314 experiments (52%). In the remaining tests,
there were neither API errors nor assertion failures since
the fault did not affect the behavior of the system (e.g., the
corrupted state is not used in the rest of the experiment,
or the error was tolerated). This is a typical phenomenon
that occurs in fault injection experiments [53], [54]; yet, the
experiments provided us a large and diverse set of failures
for our analysis. We focus on non-tolerated faults since they
are the ones of interest for the analysts. Failures point out
scenarios that are not yet handled by the cloud system, and
that require additional fault tolerance mechanisms. The pur-
pose of the proposed approach is to ease the identification
of these failure modes.

Table 1 shows, for each fault-injection campaign, the
total number of experiments that experienced a failure, the
number of events that can be observed in the distributed
system during the execution of the workload under fault-
free conditions, and the average length of the fault-free
sequences in terms of the number of events in the recorded
trace.

The number of unique events (i.e., different types of
operations performed by the system) and the number of
events (i.e., total operations of the system) per trace reflects
the extent and diversity of the workloads. DEPL is the
most stressful one in both regards, followed by NET and by
STO. Moreover, the DEPL and the NET workloads are more
non-deterministic than STO because the former perform a
massive use of the network-related operations. Indeed, net-
work operations are performed by the Neutron sub-system
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TABLE 1: Experiments in the fault injection campaigns

Workload Num. of
exps. with

failure

Num. of unique
events in the

fault-free traces

Avg. num. of
events per

fault-free trace

DEPL 537 64 285
NET 262 40 252
STO 515 41 109

in an asynchronous way, such as by exchanging periodic
and concurrent status polls among agents deployed in the
datacenter and the Neutron server. This behavior leads
to more non-deterministic variations in the traces. These
differences among the workloads are useful to evaluate our
approach under different degrees of complexity and non-
determinism.

In our implementation, we adopt the Zipkin distributed
tracing system [55], due to its maturity, high performance,
and support for several programming languages. The in-
strumented APIs send data via HTTP to a collector, which
stores trace data. The collected events are ordered with
respect to the timestamp given by the Zipkin collector. To
collect the events, we instrumented the following commu-
nication points:

• The OSLO Messaging library, which uses a message
queue library to exchange messages with an inter-
mediary queuing server (RabbitMQ) through RPCs.
These messages are used for communication among
OpenStack sub-systems.

• The RESTful API libraries of each OpenStack sub-
system, i.e., novaclient for Nova (implements the
OpenStack Compute API [56]), neutronclient for Neu-
tron (implements the OpenStack Network API [57]),
and cinderclient for Cinder (implements the Open-
Stack Block Storage API [58]). These interfaces are
used for communication between OpenStack and its
clients (e.g., IaaS customers).

Zipkin puts a negligible overhead in terms of run-time
execution, as it adopts an asynchronous collection mecha-
nism to avoid impacting critical execution paths. Moreover,
we only needed to instrument 5 selected lines of code (e.g.,
the cast method of OSLO to broadcast messages), by adding
simple annotations (the Zipkin context manager/decorator)
only at the beginning of these methods (a total of 21 lines
of Python code). Our instrumentation neither modified the
internals of OpenStack sub-systems nor used any domain
knowledge about them. The interested reader can find addi-
tional details about the instrumentation and the implemen-
tation in a previous work [10].

3.2 Evaluation Metrics

We evaluate anomaly detection with respect to the ability
to properly classify the events within a trace. In particular,
we evaluate the false alarm rate and the hit rate [59]. In our
context, a false alarm occurs when a non-anomalous event
is classified as an anomalous one, and a hit occurs when an
anomalous event is correctly classified as such. The false-
alarm rate is given by the total number of false alarms over
the total number of non-anomalous events. The false-alarm

rate should be as small as possible. The hit rate is given by
the total number of hits over the total number of anomalous
events. The hit rate should be as large as possible. Both
metrics range between 0 and 1.

Our fault-injection experiments generated over 450 thou-
sands events over 2, 538 execution traces, with 109 distinct
event types (i.e., unique events). A key concern for evalu-
ating anomaly detection is the need for a reliable ground
truth about the actual label of the events (anomalous or
non-anomalous). Unfortunately, manually assigning labels
to such a large set of data is prone to errors and unfeasible
in practice. Thus, we adopted an automated evaluation
method and opted for conservative estimates where needed
(i.e., by underestimating the accuracy of the proposed ap-
proach). Firstly, we build for each workload an anomaly
detection model based on the LCS algorithm with 50 fault-
free traces. Then, in order to define the ground-truth of
the anomalies, we run the distributed system under fault-
free conditions for a large number of times, generating an
additional set of 500 fault-free traces, which is an order of
magnitude larger than the training set of the model. Finally,
we apply the LCS algorithm on these traces. Since these
traces are fault-free, the differences pointed out by the LCS
can be considered as false alarms. We record a list of false-
alarm event types by adding an event type if it caused a false
alarm. In total, the list includes respectively 38, 30, 18 event
types for the three workloads. Instead, common events (i.e.,
non-anomalous) are considered as true negatives.

In our experimental evaluation, we consider an anomaly
raised by a detector as a false alarm if its type belongs
to the list of false-alarm event types. This method is very
conservative since we are labeling all events of these types
as false positives, even if these events could represent
true anomalies for some experiments. This approach under-
estimates the ability of the VMM at identifying true anoma-
lies since we only take into account anomalies for events that
were never affected by false alarms in our initial extensive
analysis. Furthermore, our classification assumes that the
LCS is not affected by false negatives, thus overestimating
the accuracy of the LCS approach.

3.3 Experimental Results
We aim to evaluate how the probabilistic model can prevent
false alarms and, at the same time, not to discard hits. We
analyzed the fault-injection experiments that experienced a
failure (i.e., an API error to the clients, or a failure identified
by our assertion checks). To provide context for the evalua-
tion, we compare three approaches:

• LCS, the baseline approach, which just aligns and
compares traces (as in existing techniques based on
reference runs [23], [25], [60]), without using a proba-
bilistic model to account for non-determinism;

• LCS with VMM, the proposed approach, which ap-
plies a Variable-order Markov Model after LCS, as
discussed in § 2.5;

• LCS with HMM, a different probabilistic approach,
which applies a Hidden Markov Model (instead of
VMM) after LCS.

These approaches allow us to separately evaluate the
relative influence of LCS and the probabilistic models on
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Fig. 4: Approaches comparison

the accuracy of anomaly detection, pointing out any im-
provements due to the adoption of the probabilistic model.
Moreover, we compare the accuracy of the proposed ap-
proach (VMM) with respect to a traditional probabilistic
model (HMM).

We are interested in evaluating the accuracy of anomaly
detection under different sizes of the training set (i.e., the
number of the fault-free traces). We expect that, while in-
creasing the number of training traces, the accuracy of the
approaches improves. However, since false alarm and hit
rates are related and often conflicting metrics, we look for
trade-offs between these metrics [61]. Thus, we use ROC
curves in Figure 4 to represent both the metrics, computed
over all experiments, and for different sizes of the training
set between 5 and 50. Our evaluation deliberately targets
the case of a limited training dataset, since it is typical for
developers to have only a limited time budget to conduct
test activities. In our case, an experiment takes on average 40
minutes (including the time to re-deploy OpenStack compo-
nents, to revert the state of its databases and volumes, etc.),
thus, 50 executions take about 33 compute hours, which we
ran in parallel across several machines. If we used more
training traces in our evaluation, the accuracy figures would
not have been representative of what developers would
achieve within a realistic amount of time.

The results show that LCS with VMM achieves a hit
rate higher than 90%. The hit rate saturates around 98%
when the probabilistic model is trained with 20 fault-free
traces, for all workloads. This size for the training set can
be considered small enough for practitioners to apply the
proposed approach. The proposed approach comes with
a false alarm rate of around 22%. This result means that
the probabilistic model can discard many of the differences
that are caused by non-deterministic behavior, even if a
moderate amount of false alarms still needs to be tolerated
by practitioners.

To put these results in context, we can compare them
with the results for the LCS approach. The LCS achieves a
perfect hit rate (100%) since, with our conservative evalua-
tion, we consider this baseline approach not affected by false
negatives. The false alarm rate for LCS is between 39-41%.
The false alarm rate does not improve much by increasing
the size of the training set since the LCS only identifies

differences between the fault-injected trace and one selected
fault-free trace from the training set (thus, the remaining
training traces do not contribute to identifying anomalies).

The VMM is applied in pipeline after the LCS, by an-
alyzing non-common events identified by the LCS (§ 2.5).
Thus, the VMM can reduce the false alarm rate compared
to the LCS, by classifying a “benign” non-common event
as non-anomalous. However, the VMM can also reduce
the hit rate, since it can classify a real anomaly as non-
anomalous. Overall, the LCS with VMM approach achieves
a better trade-off than LCS between a false alarm and hit
rates. The loss in hit rate with respect to LCS is about 2%
since a very small number of real anomalies are discarded
by the VMM. At the same time, the gain in terms of false
alarm rate is quite significant, since about half of the false
alarms are discarded by the VMM.

The results in Figure 4 also point out that the LCS with
HMM achieves worse performance than LCS with VMM at
identifying anomalies. In our analysis, we carefully con-
figured the HMM approach in order to perform a fair
comparison against VMM (i.e., the one that gives the best
results for HMM, in order to prevent any bias in favor of
our proposed solution). To integrate HMM into our analysis,
we configured the classification thresholds (εSPURIOUS and
εMISSING) by performing a preliminary calibration, and
we selected the thresholds that achieve the lowest number
of false positives without reducing the hit rate. Moreover,
we varied the number of hidden states, ranging between 2
and 100. As in previous research that adopted HMMs, we
initialized the transition and the symbol probabilities with
random values [62], [63], then we used the Baum-Welch
algorithm to re-estimate the parameters using the forward-
backward procedure, as in the work of Batista et al. [64]. The
ROC curve reports the results for the best configuration of
the HMM approach.

Even if the HMM reduces the false alarms compared to
the plain LCS approach, the false alarm rate (about 35%) is
still significantly higher than the LCS with VMM. The hit
rate for LCS with HMM (about 85%) is also worse than the
LCS with VMM. We attribute this behavior to the excessive
flexibility of HMMs, as they require to train a high number
of parameters, which are not tuned well when using only
a few tens of training fault-free traces (e.g., 50 traces are
still not enough to get a good accuracy). A similar problem
would occur or be even exacerbated when using other
high-dimensionality models such as neural networks [13].
Instead, even with a lower number of training traces, VMMs
can achieve a better accuracy, where 20 traces suffice to
reach a good trade-off between the false alarm and hit rates.

Finally, Table 2 shows, for each workload, the average
absolute numbers of hits and false alarms per experiment,
when using 20 training traces. It is interesting to notice
that, for each workload, the number of false alarms is
significantly higher than the number of hits. This difference
points out that the injected faults lead to only a small
number of anomalies, while the number of false alarms
can be very high due to the non-determinism of distributed
systems. These differences are higher for the DEPL and NET
workloads that have a higher degree of non-determinism.
Moreover, the table highlights that the VMM always pro-
vides the lowest number of false alarms regardless of the
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TABLE 2: Evaluation of anomaly detection, with n = 20

Workload Approach Avg. Hits per
exp.

Avg. False
Alarms per

exp.

DEPL
LCS 14 92

LCS with HMM 8 82
LCS with VMM 13 50

NET
LCS 5 120

LCS with HMM 5 106
LCS with VMM 5 58

STO
LCS 22 51

LCS with HMM 21 50
LCS with VMM 21 25

workload, with a limited loss in terms of hits.

3.4 Sensitivity analysis

In the previous analysis, we adopted conservative values for
the VMM thresholds (εSPURIOUS = 20% and εMISSING =
80%), so that the approach can filter out most of the anoma-
lies discovered by the LCS technique. Naturally, the choice
of the thresholds can influence the number of false alarms
and hits of the approach. Thus, we performed a sensitivity
analysis to estimate the influence of the thresholds (εSPURIOUS
and εMISSING) on the hit and false alarm rates. We fixed the
number of training traces to 20. We remark that, when the
probability of a spurious event is higher than the εSPURIOUS,
the event is marked as non-anomalous. Similarly, a missing
event is marked as non-anomalous when its probability is
lower than the εMISSING. Therefore, when εSPURIOUS is set to
0%, the VMM discards all anomalies, while a εSPURIOUS set to
100% results in not discarding any anomaly. Finally, setting
the εMISSING to 0% implies not to discard any anomaly, and
setting the threshold to 100% discards all anomalies.
B εMISSING. We first analyze the accuracy of the VMM with
respect to omission anomalies. Figure 5 shows the rate of
hits and of true positives (i.e., the complement of false alarms,
defined as 1 − false alarm rate, for readability), by varying
the εMISSING from 0% to 100%. We can observe that the hit
rate is higher than 0.99 until a value of εMISSING equal to 50%.
Then, the hit rate decreases slightly, until εMISSING reaches
90%. Finally, the hit rate decreases rapidly to 0 at 99%, since
even the probability of events with high-likelihood falls
below the threshold. Instead, the true positive rate increases
linearly after 1%, with significant improvement at 80%.
Thus, εMISSING = 80% is a good trade-off between hits
and false alarms. The designer can fine-tune this threshold
to prioritize hits over false alarms or vice versa if errors with
respect to one of these metrics are not tolerated.
B εSPURIOUS. We performed the same analysis on εSPURIOUS,
not plotted for brevity. The analysis points out that the hit
rate is even less sensitive rather than εMISSING. Indeed, the hit
rate only drops at 0.0 with εSPURIOUS equal to 0%, for which
all anomalies are discarded. Given that a spurious anomaly
is an event that does not normally happen under fault-free
conditions, the associated symbol is never encountered in
the training set. The probabilistic model assigns to it a low
probability since it is inversely proportional to the size of
the dictionary [38] and since in our experiments we collect
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Fig. 5: Sensitivity analysis for omission anomalies (εMISSING).

dozens of different symbols. Thus, a conservative εSPURIOUS
(e.g., 20%) is a good choice since it does not impact the hits
and, at the same time, discards many false alarms.

3.5 Computational cost
In this section, we evaluate the computational cost and
scalability of the anomaly detection algorithm. Figure 6
shows the time taken to analyze event traces, for increasing
volumes of data, i.e., by varying the number of traces to
analyze, and the number of the events per trace.

In Figure 6a, we consider the average time to apply
the approach on a single test trace with a fixed number of
events. The figure points out that the number of training
has a higher impact on the computational time of the LCS
technique rather than the computational time of the VMM
technique. Indeed, the most of the time for analysis is
incurred because of the search for the selected fault-free trace,
i.e., the training trace most similar to the one under analysis
(see also § 2.3 and Fig. 2). Once the selected fault-free trace
has been found, the VMM algorithm can be executed very
quickly, taking about 3s with 50 training traces.

Therefore, the analysis of even thousands of fault injec-
tion experiments can be performed in a reasonable amount
of time. Since the traces can be analyzed independently
from each other, they can be partitioned across several CPUs
(e.g., using SMP machines): for example, in our workstation
with 8 SMP cores, it takes about 40 minutes to analyze the
two thousands of traces that were produced by our fault
injection experiments.

Finally, we analyze the impact on the execution time for
applying the approach by varying the number of events per
trace (see Figure 6b). We consider test traces of increasing
size, by replicating the same sequence of events several
times (2x, 5x, 10x). The execution time grows linearly, as
in the previous analyses. We also found that the size of the
traces has a limited impact on the computational time of the
VMM technique.

4 EVALUATION OF FAILURE MODE CLUSTERING

In this section, we evaluate the accuracy of the proposed
approach at identifying failure modes in fault injection tests.
The approach pursues this goal by clustering the execution
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Fig. 6: Execution time for LCS with VMM.

traces so that the human analysts can analyze the data more
easily. For example, the analyst only focuses on a sample
of the experiments for each cluster instead of inspecting the
whole set of experiments, which would be unfeasible for
large fault injection campaigns.

We evaluate both the ability to identify the number of
classes in the data (i.e., how many distinct failure modes oc-
curred in the experiments), and to assign the fault injection
experiments to the classes (i.e., the failure mode to which
an experiment belongs to). First, we evaluate clustering
according to an internal criteria (§ 4.1), in which we assess
the quality of clustering in terms of quantities that only
involve the data samples. Then, we assess the quality of
clustering according to an external criteria (§ 4.2), in which
we compare the results of clustering against a reference
classification of the data (i.e., an external ground truth).
The internal evaluation assesses how well the clustering
algorithm can identify the number of classes, as internal
criteria are also adopted by clustering algorithms to estimate
the number of classes. The external evaluation assesses how
well the clustering algorithm assigns the data samples to the
classes, assuming that the number of classes has been given
in input to the algorithm.

We perform clustering using the vector representation
of executions traces based on the VMM, as in § 2.6. We
adopt an unsupervised clustering algorithm, the K-Medoids

with the squared euclidean distance measure. The algorithm
forms clusters by minimizing the sum of the dissimilarities
between objects and a reference point for their cluster.
Differently from the classical K-Means, which takes the mean
value of the objects in a cluster as a reference point, the
K-Medoids algorithm uses a medoid, i.e., the most centrally
located object in a cluster. Thus, K-Medoids is less sensitive
to outliers than K-Means [65], [66].

As a reference for the evaluation, we also analyze two
alternative, simpler approaches to clustering, which we refer
to as LCS and SEQ. The LCS performs clustering on vector
representations that are similar to the approach proposed in
§ 2.6, but without applying the probabilistic model. Thus,
evaluating LCS gives information on the influence of the
probabilistic model on clustering (e.g., due to less false
anomalies, which can distort the similarity measure). SEQ
is a baseline approach that does not use anomaly detection:
it represents each experiment with a vector of d features,
where d is the number of symbols in the dictionary. Each
feature represents the number of times that a specific symbol
occurred during the execution.

We built a ground-truth for the evaluation, by perform-
ing preliminary labeling of failures. The problem of having
a ground-truth is a quite common open problem in all the
research work dealing with log analysis. Data labeled by
real system administrators represent the ideal case with the
actual ground-truth, but this option requires a significant
resource commitment from a company. Therefore, we mit-
igated this problem by using the same data source that
would be used by a system administrator for analyzing
failures, e.g., by OpenStack logs, API Errors experienced
by clients, assertion checks from OpenStack developers,
anomalies in the traces, etc., to classify the experiments
with respect to their failure modes, based on our previous
experience with OpenStack [51]. System logs are usually
good indicators of system state as they contain reports of
events that occur on the several interrelated components
of complex systems [67]. Previous works leveraged the
collection of system logs as sources of data, which could be
analyzed by a system to make it aware of its internal state
[68]–[71]. Also, to reduce the possibility of errors in manual
labeling, multiple authors discussed cases of discrepancy,
obtaining a consensus for the failure modes.

We found the following types of failure modes:

• Instance Failure: The creation of the instance fails, or
the instance is created but it is in an error state.

• Volume Failure: The creation of the volume and/or
the attach of the volume to the instance fails, or the
volume is created but it is in an error state.

• Network Failure: The creation of network resources
(e.g., networks, subnets, etc.) fails.

• SSH Failure: The instance is correctly created and
up, but it is not reachable.

• Cleanup Failure: The deletion of resources (previ-
ously created by the workload) fails.

• No Failure: There was no failure during the experi-
ment.

TABLE 3 shows the failure modes found for each work-
load (i.e., 6, 4, and 4 failures mode respectively for DEPL,
NET, and STO workloads) and represents our ground truth
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TABLE 3: Failure Mode Classes per Workload

Failure Mode DEPL NET STO

Instance Failure 224 56 320
Volume Failure 151 - 38

Network Failure 52 30 -
SSH Failure 41 176 -

Cleanup Failure 69 - 157
No Failure 539 299 386

for clustering. Even if we use the same labels for the failure
modes across the three workloads, each failure mode should
be considered different for each workload since they involve
different resources and APIs during execution (e.g., DEPL
and STO have both cleanup failures, but with different
behaviors). This classification represents our ground truth
for evaluating the results of clustering.

4.1 Internal Evaluation
After performing fault-injection experiments, the human
analyst first needs to get a qualitative understanding of how
the system can fail under faults, i.e., to discover how many
distinct failure modes the system exhibits. Since the analyst
does not know a priori the number K of failure modes, it is
part of the task of our unsupervised analysis to determine
this number. A common heuristic is: (i) to configure the
clustering algorithm to run with a tentative value of K;
(ii) to evaluate the “validity” of the clusters, in terms of
low distance between samples assigned to the same cluster,
and high distance between samples assigned to different
clusters; and, (iii) to repeat these steps for increasing values
of K until the validity index reaches a “knee” point (i.e.,
the value of K after which the validity index significantly
drops) [72].

In this evaluation, we apply the procedure described
before in the same way an analyst would do (i.e., without
prior knowledge of the number of clusters). We compare
the number of clusters obtained with respect to our ground
truth knowledge of the failure modes (i.e., 6 failure modes
for DEPL, and 4 failure modes for NET and STO). We
adopt the Silhouette index as a cluster validity technique [73],
which computes the average dissimilarity between points
to evaluate the cohesion of data within clusters and the
separation between clusters. For a given cluster {τk}Kk=1,
this method assigns to each sample i ∈ τk a measure
si = (bi−ai)/max(ai,bi) (Silhouette width), where ai is the
average distance between the ith sample and all of the
samples included in τk, and bi is the minimum average
distance of i to all points in any other cluster. By averaging
the Silhouette width of samples in the same cluster, and then
averaging these values across clusters, we obtain a Global
Silhouette value that can be used as clustering validity index
[74].

We configure the clustering algorithm with tentative
values for the number of K clusters, with values between
K = 2 and K = 20. Table 4 shows the number of clusters
suggested by the Silhouette index, for the three vector repre-
sentations and the three workloads. In the case of clustering
based on VMM, the “knee” point matches, or is very close,
to the number of clusters in our ground truth, for all of the
three workloads. The other two clustering approaches (i.e.,

TABLE 4: Number of clusters using the Silhouette index, with
different clustering approaches.

Workload Actual
clusters

SEQ LCS LCS with
VMM

DEPL 6 2 6 6

NET 4 5 3 5

STO 4 4 3 4

TABLE 5: Purity of clusters, with different techniques.

Workload SEQ LCS LCS with
VMM

DEPL 0.74 0.91 0.94

NET 0.85 0.81 0.86

STO 0.82 0.86 0.90

LCS and SEQ) are only accurate for some workloads but do
not perform well for other ones. For example, in the case
of the DEPL workload, the knee point at K = 2 for SEQ is
much lower than the actual number of clusters K = 6 in our
ground truth. For the NET and STO workloads, the validity
index for LCS drops at K = 3 clusters, but clustering should
find at least K = 4 clusters according to the ground truth.
Overall, the vector representation with VMM leads to a
more reliable indication of the number of clusters.

4.2 External Evaluation
The external evaluation assesses clustering algorithms as
in a classification problem, by comparing the clusters with
respect to the failure modes in our ground truth (TABLE 3).
We compare, for each element in the dataset, the cluster
assigned to the element with the actual class of the element,
according to the ground truth. We adopt the following
rule for the comparison [75]: for every cluster generated
by the algorithm, we identify the ground-truth class with
the largest overlap and assign every element in the cluster
to the ground-truth class. In the case of a poor clustering
algorithm, multiple clusters may be assigned to the same
ground-truth class, but it never assigns the same cluster to
multiple ground-truth classes.

In quantitative terms, let C be the number of ground-
truth classes {ωc}Cc=1. The purity of a cluster is defined
as the fraction of elements in the cluster that matches
the ground-truth class [76]. Assuming K clusters, for each
cluster {τk}Kk=1 we define Pk = 1/nk · max(nck), where
nk is the size of the cluster τk, and nck is the number of
elements in the cluster τk that belong to the class with label
wc. The overall purity achieved by a clustering algorithm
is the weighted sum of purities across classes, given by
P =

∑K
k=1

nk/n · Pk. The larger the value of purity, the
better the clustering quality.

We compute for each workload the purity obtained by
the three clustering techniques. Table 5 shows the results.
We perform 50 repetitions and compute the average value
of purity across repetitions. We omit the standard devia-
tion since it is negligible (lower than 1e−03). The results
suggest that, for all workloads, the LCS with VMM always
provides the highest purity value. Moreover, we can notice
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that the VMM leads to an increase in the value of purity
ranging between 3% and 5% when compared to the basic
LCS approach. The SEQ technique leads to worse results,
especially in the case of a very stressful workload such as
DEPL, where the sequence of events is longer and with more
types of events. We performed the statistical hypothesis test
(Student’s t-test) to verify that differences are statistically
significant: this is indeed the case, as the test rejects the null
hypothesis at the 1% significance level. Thus, the proposed
probabilistic model can enhance the accuracy of failure
mode clustering.

5 RELATED WORK

Uncertainty in fault injection experiments. Uncertainty is
a pervasive aspect in fault injection experimentation, as the
behavior of complex systems depends on many factors that
difficult or impossible to control. Traditionally, these factors
have been addressed using statistical techniques: for exam-
ple, previous studies on hardware fault injection have been
sampling the space of fault injections (i.e., CPU instructions
and data words to be injected with bit-flips), and applying
statistical modeling for the probability of failures (e.g., to
obtain confidence intervals) [77]–[79]. This approach has
been generalized in the AMBER project [3], which adopted
data mining techniques to analyze large sets of experiments,
to identify which factors (e.g., the type of injected faults, the
workload, the configuration of the target system, etc.) has
the highest impact on performance and availability.

These concerns also apply to distributed systems, where
non-deterministic behavior introduces additional uncer-
tainty in experimental results. To address them, Bondavalli
et al. [80], [81] applied the principles of measurement theory to
assess the quality of measurements in terms of uncertainty,
repeatability, resolution, and intrusiveness. The Loki tool
[82] addressed the problem of injecting faults in controlled
global states of distributed systems since it is difficult due
to the lack of a global clock and communication delays
(e.g., between a central controller and a local injector). Thus,
Loki performs a post-experiment analysis of event traces
collected from nodes, using an off-line clock synchroniza-
tion algorithm, to identify whether injections actually hit
the desired state, and repeats the experiments only when
needed. Overall, these studies assume that failures can
be automatically and accurately identified, and our work
complements them by providing techniques for identifying
the failure modes.
Property checking. The existing fault injection tools detect
the occurrence of failures by looking for specific events,
such as service errors returned by the distributed system
to its clients (e.g., API errors); performance degradation
and bottlenecks; high-severity error messages in the logs of
the system; and assertion failures introduced by developers
inside the software. Destini [6] uses a declarative relational
logic language (Datalog) to allow developers to customize
test specifications (i.e., fault-tolerance properties that need
to be fulfilled in the presence of faults), and for checking
that the system complies with them. These specifications
are expressed in terms of events (e.g., failures and protocol
events), and relations over them representing expectations
and facts (e.g., data blocks or packets that are expected in

a given state, which are compared with the ones that are
actually observed during the test). Similarly, P# [4] identifies
failures using liveness specifications (e.g., lack of progress,
such as the inability to restore a failed node) and safety spec-
ifications (validity assertions on the local and global states
of the system), written with a domain-specific language in
terms of communicating state machines with asynchronous
events. However, these solutions require domain expertise
and human effort to be applicable. In this work, we inves-
tigate techniques to automate the identification of failure
modes without supervision, to ease the adoption of fault
injection by practitioners.
Execution trace analysis in distributed systems. Research
studies on debugging distributed systems lead to a vari-
ety of tracing-based techniques. For example, Magpie [45],
Pinpoint [83], and Aguilera et al. [84] identify causal paths
in the distributed system, by tracing and correlating call
requests and responses, and events at the OS-level and
the application-server level. These approaches were still too
difficult to apply in practice, as they either focused only on
synchronous (RPC-style) interactions between components
and neglected asynchronous and concurrent ones; or, they
required intrusive instrumentation of the entire software
stack down to the OS. Pensieve [85] is an approach similar
way to delta debugging, to reconstruct the intermediate
path backward from the failure to the user inputs and events
that cause the failure, by combining static analysis and itera-
tive re-executions of the system. Friday [86] is a distributed
debugger that allows developers to replay a failed execu-
tion of a distributed system, and to inspect the execution
through breakpoints, watchpoints, single-stepping, etc., at
the global-state level. ShizViz [44] is an interactive tool for
visualizing execution traces of distributed systems, which
allows developers to intuitively explore the traces and to
perform searches; moreover, the tool provides support for
comparing distributed executions with a pairwise compar-
ison, even if without probabilistic techniques to filter-out
benign variations due to non-determinism.

The approach proposed in this paper is unique in the
design space of distributed system analysis, as it is the first
one tailored for the analysis of fault injection experiments.
The approach identifies failures without relying neither on
programmer-written specifications nor on intrusive instru-
mentation, and it is applicable even in the presence of
asynchronous and rare interactions. Our approach can be
easily deployed and integrated into interactive tools for
debugging and visualization, to provide more robust trace
comparison and analysis abilities.

6 CONCLUSION

In this paper, we presented a novel approach for discovering
failure modes in distributed systems, by combining fault
injection, distributed tracing, and unsupervised learning
algorithms. By adopting a probabilistic model (VMM), our
approach can identify anomalies in noisy execution traces,
by significantly reducing the false alarms without discard-
ing true anomalies. To further help the human analyst at
analyzing failures, we presented a novel technique that
clusters fault injection experiments according to classes
of failure modes. The results showed that clustering can
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achieve high accuracy under different conditions. Future
works will include an analysis of how the training of a
model in a specific execution environment affects the dis-
covering of failure modes from fault injection data obtained
from different execution environments.
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