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Packet classification is an important functionality of modern routers/switches, needed in packet forward-
ing, Quality of Service (QoS), firewall etc. In order to better utilize routers on the Internet, Software 
Defined Network (SDN) decouples control plane from data plane to fulfill centralized management. Based 
on OpenFlow standards, packet classification in SDN is designed for multi-field rules which are more 
complex than traditional 5-tuple rules. In the paper, we propose a novel packet classification algorithm, 
called hierarchical hash tree (H-HashTree), based on the two IP address fields and the 7 exact-match 
fields to partition rules into groups. An extended Bloom filter is also proposed to accelerate search process 
by skipping groups in the hash tree. To further improve the performance, H-HashTree is implemented on 
GPU. We tested on 100K rules including synthesized rules containing characteristics of ACL, FW, and IPC 
with different wildcard ratios in exact-match fields, and real OpenFlow rules from Open vSwitch. Com-
pared with the existing state-of-the-art algorithms, CutTSS and TabTree [19][18], H-HashTree achieves the 
best performance on both search and update speeds. H-HashTree achieves 1.17-13.9 and 2.48-12.7 times 
faster in search speed and 2.03-6.0 and 1.87-4.53 times faster in rule updates from synthesized rulesets 
than CutTSS and TabTree, respectively. On the GPU platform, H-HashTree can achieve up to 114 MPPS in 
search speed and less than 0.04 usec/rule in rule updates.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

The research of packet classification algorithms must always 
be improved to meet the requirement of modern network. Packet 
classification [13] is a process to find out which flow each packet 
belongs to in the router. Each flow is specified by certain rules. 
The router is responsible for distinguishing packets into differ-
ent flows. The router processes all packets belonging to the same 
flow followed by pre-defined rule and its action. A traditional rule 
contains five fields including Source and Destination IP addresses, 
Source and Destination ports and protocol number. Each rule has 
its own priority value The rule with highest priority is selected to 
be the final matched rule and is returned to the controller when 
multiple rules match against the incoming packet. Geometrically, 
high priority rules tend to overlay lower priority rules. The pur-
pose of packet classification is to match incoming packets among 
thousands of rules (we refer to as rule table) as fast as possible. 
In legacy network system, the rule table is considered to be sta-
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ble. Some packet classification algorithms are not capable of doing 
updates and must rebuild the whole data structure if necessary.

Nowadays, with the emerging of Software Defined Networks 
(SDN) [22], network system becomes more flexible, and much eas-
ier for administrators to control and manage. OpenFlow is one 
of well-known standards that support SDN and it provides more 
match fields than traditional 5-fields. Compared with legacy net-
work system, SDN has a better ability to handle modern develop-
ment of network applications and continuously changing of net-
work requirements. These powerful properties rely on dynamically 
updating rules of the classifier and fast packet classification speed. 
As a result, focusing on fast updates are definitely essential for 
classifier today and in the future. The rise of general-purpose GPU 
(GPGPU) has made the implementation of GPU-assisted network 
applications easier than ever. Many GPU-accelerated network ap-
plications and frameworks [9][35][15][10] have adopted discrete 
GPU or APU to enhance their performance. The powerful arith-
metic processing ability and fast context switch of GPU make the 
computation of hash procedure and large data (such as many-field 
OpenFlow packets, the number of flow match fields can up to 45 
in OpenFlow version 1.5.1 [23] compared with traditional 5-field 

packets) more effective than modern CPU.
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Fig. 1. Software architecture of the switch.

Fig. 1 shows the software architecture [32] of the switch that 
we consider in this paper. The switch is connected to the net-
work by one or more 10Gbps MAC links. Also, the switch is con-
nected with a GPU card via PCIe bus. CPU receives the packets 
from network and extracts the needed packet headers for packet 
classification. In CPU scenario, the classification data structure is 
constructed and stored in CPU and so the classification process is 
performed inside the CPU. By assuming minimum-sized 64-byte 
packets as in [11], one 10Gbps link accounts for 19.5M packets 
per second. This means that CPU has to be fast enough to clas-
sify 19.5M packets per second. Because packet’s data is surrounded 
by an ethernet preamble, frame check sequence, ethernet epilogue, 
the effective throughout [1] that is only about 71.4% of the original 
throughput is 14.88 MPPS for packets of size 64 bytes. Our perfor-
mance results shown in this paper indicate the highest throughput 
of the best existing schemes that CPU can support for 10K rules 
is 12 MPPS. As a result, the computation capability of CPU is not 
sufficient for this large amount of packets and so we may need to 
resort to GPU. In GPU scenario, the classification data structure is 
constructed in CPU and then copied to GPU and the packet head-
ers are sent to GPU in a batch fashion. However, the bandwidth 
of PCIe bus between CPU and GPU must be large enough to trans-
fer the headers from CPU to GPU. Consider the 257-bit 12-field 
headers that we study in this paper. PCIe 2.0 × 16 (64 Gbps) can 
transfer the headers of 249M packets. As a result, the bandwidth 
of PCIe 2.0 × 16 is capable of transferring the needed headers to 
GPU for packet classification. After finishing the packet classifica-
tion process, GPU sends the results back to CPU.

In this paper, we introduce a packet classification algorithm 
suitable for classifying not only traditional 5-field packets but also 
OpenFlow packets. We build a hash-based decision tree, which we 
refer to as hierarchical hash tree (H-HashTree). Compared with [6], 
H-HashTree achieves high classification speed, fast rule updates 
and much more memory efficiency. H-HashTree outperforms the 
existing state-of-the-art algorithms CutTSS and TabTree [19][18] in 
both searching and updates.

The rest of this paper is organized as follows. In section 2, 
we review the recently proposed packet classification algorithms 
and in section 3, OpenFlow analysis and GPU are described. In 
Section 4, we introduce the proposed hierarchical hash tree (H-
HashTree) data structure and enhancement by the extended Bloom 
filters. The experimental results are presented in section 5. This pa-

per is concluded in the final section.
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2. Related work

In this section, we first review some recently proposed packet 
classification schemes based on tuple space search for supporting 
fast update operations. Then, we analyze the flow tables of the 
OpenFlow. Finally, we introduce the GPU architecture that is our 
target.

The packet classification algorithms can be categorized into four 
types, namely, the exhaustive search, decomposition-based scheme, 
decision tree, and tuple space search. Exhaustive search schemes 
that check all rules include linear search and the TCAM schemes. 
Decomposition schemes first construct a search data structure for 
each field independently. Then all the data structures are searched 
by using the corresponding packet headers of the incoming pack-
ets. Finally, the search results from all search data structures are 
ANDed to find the final matched rules. The typical example is RFC 
[12]. Decision tree schemes first construct a decision tree based on 
the field values of all rules, and then perform the search operations 
by traversing the decision tree. HiCuts [13] and HyperCuts [29]
are two most famous decision trees. Recently proposed decision 
trees include recursive endpoint-cutting (REC) [5], NeuroCuts [21], 
and CutSplit [20]. Decision trees have fast search performance, but 
their updates are slow and do not meet the requirement of SDN. 
Tuple space search (TSS) [30] partitions rules into many tuples ac-
cording to the number of specific bits or other field properties. We 
have to search all the tuples against header values of the packets 
to find the final matched rule.

The advantages of TSS are that no rule is duplicated and the 
update operation is fast. In basic TSS, a hash table is constructed 
for each tuple to support fast rule update. The bits associated with 
each tuple are extracted form the packet headers to form a hash 
key to search the tuple. When the ruleset becomes large, it is pos-
sible to generate too many tuples and so the search performance 
will be degraded.

Since TSS can support fast updates, many recently proposed 
schemes that targeted on flow table lookups in SDN are based 
on TSS. One noticeable example is the priority sorting tuple space 
search (PSTSS) [26] in Open vSwitch (OVS). OVS is a software 
OpenFlow switch that is open-sourced and publicly available. OVS 
is designed for network management and protocol supports and 
used in NetFlow and sFlow. PSTSS records the highest rule priority 
of each tuple and all tuples are searched in the decreasing order 
of their priorities. When a matched rule is found and its priority 
is higher than the highest priority of the next tuple, the lookup 
process can be terminated.

Another TSS-based scheme called TupleMerge [7][8] reduces 
the number of tuples by relaxing the restrictions of using the same 
set of bits in one tuple in order to merge many tuples into one. 
TupleMerge controls the number of tuples to be merged by the 
following rule. If the number of collisions in hash tables is greater 
than a predefined threshold, TupleMerge will use more tuples to 
place these rules.

TabTree [18] a TSS-assisted bit-selecting tree that takes advan-
tage of both decision tree and fast updates of TSS approaches. The 
construction of TabTree can be divided into three steps. Given an 
N-dimensional rule R = (F1, ..., Fi , ..., F N ) and a threshold value 
vector T = (T1, ..., Ti , ..., T N ), Fi is a big field if the range length of 
field Fi > threshold value Ti ; Otherwise, Fi is a small field. For a 
W-bit field Fi with threshold 2K , Fi is a small field if and only if 
there are no wildcard (*) at its most significant W – K bits. These 
W – K bits can be called selectable bits. Each rule partition is built 
in a decision tree by selecting the most distinguishing selectable 
bits in each tree node. So, rules can be mapped into its children 
nodes in the most balanced fashion. There are two bit-selecting 

strategies, brute force and greedy described as follows.
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In brute force strategy, we look for minimum standard devia-
tion. Assuming there are M rules and B unused selectable bits. Find 
at most b bits at one-time from selectable bits, which partitions 
rules into n = 2b subsets in the most balanced fashion. We find 
the smallest costFunc(b bits) from all C B

b combinations, where xi is 
the number of rules in the i-th subset:

costFunc (bbits) =
√∑n

i=1(xi − x)2

n
, where x = M

n
.

In greedy strategy, we choose at most b bits by selecting one 
bit at a time, where each selected single bit is with the small-
est imbalance value among current selectable and unused bits. The 
branching progress stops when the tree depth reaches a prede-
fined value, or the number of rules in tree node is less than binth, 
or tree node cannot be further separated, or bit selecting will lead 
to rule duplication due to wildcard.

The third step checks the number of rules in each tree leaf. If 
# of rules ≤ binth, they use linear search. Otherwise, these rules 
are further constructed based on PSTSS. This scheme can avoid rule 
replication problem as well as create a relatively balanced tree. But 
the drawback is that the lookup process need to search all the 
subsets and thus increase the search time.

CutTSS [19] also uses concept of small fields to partition rules 
in a ruleset into subsets, similar to TabTree. There are several dif-
ferences between the two. The first is to assign priority to each 
subset according to the maximum priority of all rules in the sub-
set, and sort these subsets. Therefore, if the priority of the matched 
rule is greater than the priority of the next subset, the search pro-
cess can be terminated. The second is to use the Fixed Cutting 
(FiCuts) algorithm to build the tree in the first stage. The differ-
ence between HiCuts and FiCuts is that the FiCuts is cut based on 
the small field of each subset, because it will not cut a large scale 
field, which can avoid the problem of rule replication. The third 
is to compute the search performance between linear search and 
PSTSS and determine which one is better. However, this scheme is 
likely to have poor performance in large scale classifier. One rea-
son is that it does not limit the depth of the tree, which will cause 
more time to traverse the tree, and a more unbalanced tree. An-
other reason is that the rules stored in some leaf nodes are too 
many and so it becomes the bottleneck during searching.

In [33], a hierarchical 3-Layer Hash Tree based on the 7 exact-
match fields is proposed. The 3-Layer Hash Tree is a Decision-tree 
extended by adding hash tables to process the fields with exact 
values. Because these exact-match fields contain only exact value 
or wildcard, we can simply group the rules with same type into a 
group, and each group has its own hash table. Because the exact-
match fields contain only exact value or wildcard, we need 2n

hash tables if the layer contains n fields. A Bloom filter is used in 
each layer to detect whether some hash tables can be skipped to 
speed up the search performance. One disadvantage is the mem-
ory explosion on system memory. As shown in the experimental 
results of [33], the 3-Layer Hash Tree built for 12K rules takes up 
to 1190 MB memory space. The memory problem can be solved by 
hash table compression to reduce the memory to 70 MB. However, 
with the hash table compression, real time updates are no longer 
supported and so the needs of frequent rule updates in SDN en-
vironment can not be fulfilled. Another issue that the real time 
update can’t be satisfied is the rule expansion in the third layer. In 
layer 3, they perfectly hash the rule with VLAN priority and IP TOS
into 512-bit hash table. Also, the rule expansion in layer 3 results 
in 512 update operations.

In the first two layers, the Bloom filter and possibility bitmaps 
are used to skip unnecessary search in subgroups. The over-
reliance of certain type of rules in Bloom filter restrains the Bloom 

filter’s performance. Moreover, the worst case of updating Bloom 
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Table 1
Characteristics of OpenFlow rules (ClassBench-ng).

% of rules having wildcard in all 7 additional fields

ruleset OF1 OF2
percentage 2.14 % 1.50 %

% of rules having non-wildcard in Src or Dst MAC fields

ruleset OF1 OF2
percentage 97.33 % 98.31 %

filter needs up to 64 insertions in two hash tables which is in-
tolerant in modern network environment. Cooperating with ignore 
flag, the Bloom filter can only work on small rulesets with limited 
variety of rule types.

The 3-Layer Hash Tree only focuses on using the 7 exact-match 
fields. We know that there are still some traditional 5-field rules 
in the ruleset, which resulting in performance bottleneck. That 
all 7 exact-match fields are wildcard means we can only search 
these rules linearly. The synthesized OpenFlow rulesets used in 
[33] exclude all traditional 5-field rules. Therefore, their experi-
mental results cannot reveal the true performance if the algorithm 
is implemented in practical environment.

Varvello et al. [31] used GPU to accelerate linear search, tuple 
search, and bloom filters search. The bloom filters search algorithm 
achieves up to 115 MPPS classification speed for small rules-sets 
(up to 5k rules). However, the performance dramatically decreases 
to 20 MPPS for 100k rules due to increasing number of classes. 
The one-level entropy-based hashing scheme (named IG) was pro-
posed recently in [11] to process packet classification in GPU. IG 
uses a hash function of the 18-bit hash key to split the original 
ruleset into small subsets. It requires only a 2MB database to store 
all rules. The classification phase uses the same hash function to 
calculate the hash value that points to the address of the 64-bit 
pointer array. The 64-bit pointer point to a sub-table which con-
tains a sub-list of possible matched rules. Then, it uses a simple 
linear search to find the rule matching the incoming packet. In or-
der to speed up searching, the authors proposed to use GPU to 
perform parallel linear search.

3. Openflow analysis and GPU

3.1. Openflow table analysis

OpenFlow switch is composed of several flow tables, each of 
which is made up of many flow entries or called rules. In Open-
Flow 1.0, rules have 12 fields that include 5 traditional fields and 
7 additional fields. These 5 traditional fields are source and des-
tination IP addresses (32 bits) in prefix format, source and des-
tination Ports (16 bits) in range format and protocol number (8 
bits) in exact-match format. The other 7 additional fields consist of 
one metadata field named ingress port and six exact-match fields, 
namely source MAC address (48 bits), destination MAC address (48 
bits), Ethernet type (16 bits), Vlan ID (12 bits), VLAN priority (3 
bits), and IP TOS (6 bits). The ingress port is implementation de-
pendent but we use 16 bits as in Open vSwitch. The exact-match 
format means the values can be either a number or wildcard. This 
means these 7 fields are suitable for subgrouping rules with hash 
method, providing better performance in packet classification, es-
pecially in updates. Source and destination IP fields are prefixes of 
lengths 0 to 32, source and destination port fields are ranges, pro-
tocol field and the other 7 fields are exact-match fields. Ingress 
port does not define a specific size in the specification of Open-
Flow 1.0 [24], it is a Metadata field that relates to the treatment of 
a packet, which is not extracted from the packet data itself and de-
pends on what platform we implement OpenFlow Protocol. Open 

vSwitch is one of the most popular open source software virtual 
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Table 2
Rule type analysis of OF1.

1 2 3 4 5 6 7 8 9

src ip dst ip src port dst port proto ingress port src mac dst mac eth type Percent (%)

� � � � � 39.87
� � � � � 33.02
� � � � � 9.29
� � � 7.63

� 3.19
� � � 1.87
� � � � 1.49

� � 0.77
� � 0.64

� � � � 0.63
� 0.51

� 0.30
� 0.26
� � � � 0.17

� � � � � � 0.16
� � � � � 0.11
� ∼ 0.0

*17 types and Vlan ID, Vlan priority, IP ToS are all wildcards

Table 3
Rule type analysis of OF2.

1 2 3 4 5 6 7 8 9

src ip dst ip src port dst port proto ingress port src mac dst mac eth type percent (%)

� � � � � 81.05
� � � � � 7.88

� � � � � 5.65
� � � 1.55

� 1.47
� � � 1.28
� 0.20
� � � � 0.18

� 0.18
� � 0.16

� � 0.12
� � � � 0.10

� 0.07
� � � � 0.03

� ∼ 0.0

*15 types and Vlan ID, Vlan priority, IP ToS are all wildcards.
multilayer network switch that supports OpenFlow protocol. The 
proposed scheme in this paper follows the fields specified in the 
Open vSwitch Manual [25], so that the size of the Ingress port 
defined in the algorithm is 16 bits. Therefore, the total size of 
each rule in OpenFlow 1.0 is 253 bits which is two times longer 
than traditional 5-field rules of 104 bits. The differences between 
traditional rules and OpenFlow rules are such that we need a dif-
ferent way to deal with packet classification in order to sustain fast 
search as well as fast update in SDN environment.

From the observation of OpenFlow rules, most fields consist of 
exact values or wildcards, in particular, the Source and Destination 
MAC addresses. The MAC address consists of a 24-bit manufac-
turer prefix - Organizationally Unique Identifier (OUI) that uniquely 
identifies a vendor, manufacturer, or other organization and a 24-
bit device identifier, meaning there are 224 different combinations 
of device IDs within a single OUI.

In recent network environment, technology changes on both 
protocols (the uptake of IPv6) and network architectures (the 
adoption of Software Defined Networking, SDN). Especially, IPv6 
and OpenFlow increase the complexity of rule matching prob-
lems so that researchers encounter new challenges on ASIC design. 
ClassBench-ng [16] provides IPv4, IPv6, and OpenFlow 1.0 classifi-
cation rule sets taken from operational environments, where IPv4 
and IPv6 prefixes have been taken from core routers. Classification 
rule sets come from Access Control Lists (ACLs) applied at a uni-

versity network’s perimeter, while the analysis of OpenFlow data 
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is based on a set of Open vSwitches running in a cloud datacenter 
environment.

There are two OpenFlow seed files provided by ClassBench-
ng, namely OF1 and OF2. We generate OpenFlow rulesets based 
these seeds and show the performance of our proposed method in 
later sections. Table reveals that some rules are equivalent to tra-
ditional 5-tuple rules whose 7 additional fields are all wildcard. 
Interesting results shown in Table conclude that a lot of rules have 
non-wildcard field values in source or destination IP address fields 
and prefix length of those non-wildcard source or destination IP 
address field concentrates on 30 to 32. According to the MAC ad-
dress analysis for OF1 in Table 2 and OF2 in Table 3, we found 
that over 97% of rules have at least one non-wildcard MAC field. 
There are less than 3% of rules whose source and destination MAC 
addresses are wildcards at the same time. Most importantly, each 
MAC address is relatively different from each other. As a matter of 
fact, MAC address is expected to be unique. The uniqueness of MAC 
addresses in the rules results in low collision in hashing method. 
This is a critical attribute that we can use to divide rules into sub-
groups for packet classification.

3.2. GPU architecture

Discrete GPU plays the role of a PCIe peripheral device to com-
municate with host machine via PCIe bus. GPU consists of hun-

dreds of thousands of cores (e.g. 2304 cores in AMD RX580) and 
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Fig. 2. “Radeon” GPU Architecture.

GDDR memory with high memory bandwidth (e.g. 8 GB GDDR5 
with 256 GB/s in AMD RX580). The program processed by GPU is 
called kernel that is a function with special prefixes (e.g. __global__ 
or __device__). Kernel codes contain single instruction and multi-
ple data (SIMD) instructions executed by a group of threads with 
different data under the same instruction stream in a lock-step 
manner (called a warp in NVIDIA or a wavefront in AMD hard-
ware). The benefits of GPU over CPU include powerful computation 
capability on arithmetic operations supported by runtime API and 
fast hardware thread switching that can hide memory access la-
tency.

In this paper, the target GPU is AMD rx580 that utilizes Graph-
ics Core Next (GCN) 4 (generation 4) architecture whose instruc-
tion set architecture is the same as GCN 3. From the reference 
guide of AMD GCN 3 architecture [2], we show an abbrevi-
ated hardware architecture of GPU processor in Fig. 2. The main 
components of GPU processor include a data-parallel processor 
(DPP) array, a command processor, a memory controller, and an 
ultra-threaded dispatch processor. The GCN command processor 
reads the commands which the host has written to the regis-
ter in the system memory address space. After the operations of 
the command complete, the command processor sends hardware-
generated interrupts to the host. The GCN memory controller can 
directly access GCN device memory and host-specified areas of 
system memory without the participation of the processor, which 
eliminates large overhead from interrupt calls. The ultra-threaded 
dispatch processor (scheduler) is responsible for the fast context 
switching between threads. Threads are put to sleep when they 
need resources with high response latency like memory access.

The host applications cannot write data directly to the device 
memory of GPU and they can only instruct GPU to copy data be-
tween system memory and device memory. This can be achieved 
in the following two ways.

1) Request DMA engine on GPU to write data from the address 

of the source data in CPU memory to the location at the offset 
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in GPU memory. For example, in AMD ROCm HIP, it is done by 
calling hipMemset or hipMemcpy.

2) Upload a kernel function to run on GPU and access the mem-
ory through PCIe bus, then process and store it in GPU mem-
ory. This concept is similar to unified virtual memory (UVM) 
where GPU can access any page of the entire system mem-
ory and simultaneously copy the data on-demand to its own 
device memory for high bandwidth access.

There are 4 separate SIMD units in each CU for vector process-
ing, each of which consists of 16 vALU associated with vGPR. The 
vALU-assisted instructions perform an arithmetic or logical opera-
tion on data for each thread. As a result, each CU can operate on 
64 threads at the same time. A group of 64 work items (data) is 
called wavefront. Each wavefront has a single program counter and 
is the minimum granularity for work on CU. When a wavefront is 
created, the program counter is initialized to the first instruction 
of the program. In AMD GPU with GCN architecture [3][4], each 
CU contains 4 SIMD units for vector processing. Each SIMD unit 
simultaneously executes a single operation on a wavefront of 16 
work items (data), but each can be working on a separate wave-
front. Also, each 16-wide SIMD processes one 64-wide wavefront 
over 4 clock cycles. In each clock cycle, the scheduler issues one 
vector instruction of the wavefront that is active on CU to one of 
the four SIMD units. So over 4 cycles each SIMD has an instruction 
issued to it and the scheduler is back to the start.

Streams allow the overlap of computation time of CPU receiving 
packets of the next batch and communication time of GPU classi-
fying the packets of the current batch. In other words, a kernel 
from one stream is running in GPU, while a data copy from an-
other stream is also running in parallel. As a result, the overall GPU 
utilization is improved with concurrent memory copy and kernel 
execution.

The Radeon Open Compute (ROCm) project [27] is an open 
source development platform built for High Performance Comput-
ing (HPC). The ROCm ecosystem is comprised of technology in-
cluding math library, a set of tools (e.g. debugger, performance 
analysis etc.), programming models (e.g. OpenMP, HIP, OpenCL 
etc.) or frameworks (e.g. TensorFlow, PyTorch etc.). Heterogeneous-
Compute Interface for Portability (HIP) [28] is a clang-based C++ 
runtime API and GPU language to create portable GPU programs 
for AMD and NVidia devices in a single source code. The compiler 
of HIP programing model is called HIPCC and it can be used to 
replace nvcc in existing CUDA code. HIPCC will call nvcc or hcc 
depending on what platform the code is running and include ap-
propriate platform-specific headers and libraries.

4. Proposed scheme

In this paper, we propose a scheme called hierarchical hash 
tree (H-HashTree) that carefully selects some fields to divide the 
rules into groups. A hash table is constructed from the rules of 
each group to further divide the rules into buckets. The rules are 
indexed into buckets of hash tables with simple hash functions 
which perform XOR operations on the hash keys. If the number 
of rules in a bucket exceeds a predefined threshold, we further 
partition the bucket into smaller subsets using other fields. If the 
number of the rules in a bucket is smaller than the threshold, we 
simply save these rules in the linked list for linear search. While 
classifying packets, the needed header values are extracted from 
each packet header to form the search key for the same hash 
function used in the hash table construction process to locate the 
bucket for further search. Each packet will eventually reach some 
buckets using these hash functions. We fully match these candi-
date rules against the packet headers to determine which rules 

really match the packet. If there are multiple matched rules, we 
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choose the rule with the highest priority and output its rule action 
for this packet. However, if there isn’t any rule matched, we shall 
not receive this packet and just drop it.

As described earlier, OpenFlow rules are longer than traditional 
5-D rules and the fields other than IP address and port fields are 
in the exact-match format that are either exact values or wild-
cards. Table 1 shows that the prefixes of two IP address fields of 
OpenFlow rules are very specific. The recently proposed TSS based 
algorithms [19][18][7][20][8][34] focused on partition rules into 
tuples based on these two IP address fields. For OpenFlow rules 
with long prefixes in IP address fields, it is hard to gain much ben-
efits from these algorithms since the goal of tuple space search 
is to scatter the rules into a reasonable number of groups based 
on prefix lengths. Because of the characteristics of OpenFlow rule-
sets and the degeneracy of TSS-based algorithms built for these 
rulesets, we must find another method to support both fast search 
speed and real time updates. Compared with the existing schemes, 
we will show that the proposed scheme performs better in both 
search and update.

The proposed H-HashTree consists of three parts: main hierar-
chical hash tree, extended Bloom filter and extra hierarchical hash 
tree. The main hierarchical hash tree has 4 layers as shown in 
Fig. 3. In each layer, we use certain fields to partition rules into 
groups and then the rules of each group is stored in the cor-
responding hash table. If the number of rules in any entry (i.e., 
bucket) of the hash table exceeds a predefined threshold, we put 
these rules in next layer by further partitioning them into groups 
based on some unused fields. In layer 1, we partition rules into 
four (22) groups by checking if source and destination MAC ad-
dress fields are wildcard or not. In layer 2, we partition rules into 
eight (23) groups by checking if ingress port, Ethernet type and 
Vlan ID fields are wildcard or not. In layer 3, we partition rules 
into four (22) groups by checking if the prefix length of source and 
destination IP address fields are longer than a predefined thresh-
old or not (we use length of 16 in the experiment). In the final 
layer, we partition rules into four (22) groups by checking if Vlan 
priority and IP ToS fields are wildcard or not.

The extended Bloom filter stores bitmasks for the purpose of 
detecting if there are any hash tables in layers 1 and 2 that do not 
need to be searched for an incoming packet. Any rule that can-
not be processed by extended Bloom filter is inserted into extra 
hierarchical hash tree, e.g. rules with wildcards in all four fields, 
Ethernet Type, VLAN ID, Source MAC, and Destination MAC. The 
extra hierarchical hash tree is constructed by 2 layers in which the 
first layer is identical to the third layer of main hierarchical hash 
tree (partitioned by source and destination IP address fields). In the 
second layer, we partition rules into eight (23) groups by check-
ing if ingress port, Vlan priority and IP ToS fields are wildcard or 
not. Fig. 4 shows the search algorithm of the proposed algorithm, 
where the part of layer-3, layer-4, extra-layer-1, and extra-layer-2 
are omitted because they are similar to the first two layers.

4.1. Main hierarchical hash tree

In the first layer, we choose source and destination MAC fields 
that can uniformly distribute the rules in a ruleset into a number 
of subsets. Four groups are formed according to whether source 
and destination MAC field are wildcard or not. Each group is im-
plemented as a hash table in which each entry stores either a 
pointer to layer-2 node or a pointer to a bucket. Based on our 
analysis shown in previous subsection, almost every OpenFlow rule 
contains a non-wildcard source or destination MAC address field. 
Source and destination MAC addresses are the longest fields among 
all fields that can provide outstanding diversity of field values for 
efficient partitioning, as shown in Table 2 and Table 3, for OF1 

and OF2 rulesets of 30K rules, respectively. The collisions of field 
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Fig. 3. Overview of Main Hierarchical Hash Tree.

Fig. 4. Layer-1 search algorithm.

value in source and destination MAC addresses nearly do not exist, 
which means the field value of most rules containing non-wildcard 
MAC address is easy to be used to distinguish from each other. The 
pseudo code of the hash function for MAC addresses is shown in 

Fig. 5.
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Fig. 5. The 16-bit XOR folded hash function for MAC addresses of layer-1.

In layer 2, we follow the grouping strategy similar to layer 1. 
But this time, rules are divided into 8 groups by using Ingress port, 
Ethernet type and Vlan ID fields. In general, all these 8 groups 
have to be searched for each packet. A layer-2 node is comprised 
of 8 hash tables of size 4096 entries. To compute the group ID to 
which a rule belongs, ingress port, Ethernet type and Vlan ID fields 
correspond to b2, b1, and b0 of group ID b2b1b0, respectively. If a 
rule has a non-wildcard value in the field corresponding to bi for 
i = 0 to 2, bi = 1 for group ID of this rule. Otherwise, bi = 0 for 
group ID of this rule. For example, if only Ethernet type field value 
of a rule is non-wildcard, this rule will be put in group 2. Similar 
to layer-1 node, each entry in the hash table saves either a pointer 
to layer-3 node or a pointer to a bucket.

In layer 3, we use two IP address fields to divide rules into 
4 groups by checking whether the source or destination IP pre-
fix length is longer than 16. All these 4 groups are implemented 
with hash tables of sizes 65526. Since there is no Bloom filter 
support, all four groups have to be searched for each packet. The 
reason why we separate rules with prefix length 16 is that most 
rules are already classified in the linear search buckets in the pre-
vious layers, only few rules left over from the buckets with # of 
collision more than predefined threshold. We don’t have to sep-
arate rules into fine-grained tuples like tuple space search does. 
Most tuples won’t be used, and the number of rule types is not 
too many. Therefore, we can simply classify rules into four groups. 
Also, OpenFlow and ACL rules tend to contain long prefix length, 
IPC and FW rules contain considerable amount of short prefix 
length. We use prefix length 16 as a compromised criterion for 
grouping rules.

In the last layer of main hierarchical hash tree, we use the re-
maining two fields to classify rules, which are Vlan priority and IP 
ToS. The two fields are the shortest among exact match fields, pro-
viding less ability to classify rules into subgroups by hash method. 
As a result, we apply the two fields in the final layer. Although 
Vlan priority and IP ToS are all wildcard in OpenFlow rules [16], 
we still implement the hash table without losing generality be-
cause Vlan ID is of size 16 bits which theoretically provide great 
ability to classify rules if it is non-wildcard. The same reason can 
be applied to Vlan priority and IP ToS, but they are too short and 
cannot provide good hash performance for rule grouping. We re-
tain these two fields in layer-4 hash table since we expect that 
after distributing rules onto the first three layers, each resulting 
group in layer 4 is small enough to make Vlan priority and IP ToS 
work without too many collisions. We separate rules into 4 groups 
by checking whether Vlan priority and IP ToS are wildcard or not. 
All these four groups are of size 65536 hash tables and have to 
be searched for each packet. All rules in the hash table entries are 
saved in linked lists.

4.2. Extended bloom filter phase

We propose an extended Bloom filter to be used in the first two 

layers of the H-HashTree in order to accelerate the search process. 
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Fig. 6. Diagram of extended Bloom filter insertions.

There are four extended Bloom filter for the rules whose Ethernet 
Type and Vlan ID field values are in the form of (*, *), (*, E), (E, 
*), and (E, E). We associate two bits, b1 and b0, of a 2-bit ID with 
Ethernet Type and Vlan ID field, respectively. Then, b1 is set to 1 if 
Ethernet Type field value of a rule is non-wildcard; otherwise, b1
is set to 0. The bit b0 is set similarly for Vlan ID field. As a result, 
if a rule is associated with ID = i for i = 0 to 3, it will be inserted 
into extended Bloom filter i.

Each extended Bloom filter consists of two bitmask arrays, 
namely MaskArray1 and MaskArray2, hashed by two hash func-
tions based on 4 fields, Ethernet Type, Vlan ID, source MAC, and 
destination MAC fields. The hash functions for these two arrays 
are as follows.

h1 = hash1(Eth, VlanID, SrcMac, DstMac, seed1);
h2 = hash2(Eth, VlanID, SrcMac, DstMac, h1, seed2);

The entries of these two arrays are in the form of 12-bit bit-
masks that will be explained later. When computing the hash 
functions, the wildcard value is treated as zero in these four fields. 
The bitmask saved in extended Bloom filter consists of 4 bits for 
layer-1 node and 8 bits for layer-2 node. A set bit in the bitmask 
means we have to search the corresponding group. An unset bit in 
the bitmask means any matched rule does not exist in the group 
definitely.

Fig. 6 shows an example that rule R1 should be put into group 
2 in layer 1 and into the group 4 in layer 3 if the bucket of R1 
in layer-1 node exceeds the threshold. As a result, the 12-bit mask 
is computed to be (001000001000). Since R1 has the field values 
of (E, *) in Ethernet Type and Vlan ID fields, it is inserted in to 
extended Bloom filter 2. As shown in the figure, hashed indices 
h11 and h12 are assumed to be 49228 and 28688, respectively. 
Therefore, the computed mask of (001000001000) will be put into 
the 49228th entry by ORing it with the old mask in MaskArray1. 
Similar operations are performed in MaskArray2. Fig. 6 also shows 
that another rule R2 should be inserted into extended Bloom filter 
3 with the computed mask of (001000100000).

If rules have wildcard values in all Ethernet Type, VLAN ID, 

source MAC and destination MAC fields, we do not add them in 
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the extended Bloom filters because they cannot be scattered by 
the hash functions. Instead, we build an extra hierarchical hash 
tree for them. The benefit of the extra hash tree is that we turn to 
search a hash tree with less layers and less rules which potentially 
speed up searching process.

When a packet comes in with headers of (Ether Type, Vlan ID, 
srcMac, dstMac) = (65535, 4095, FF:00:00:FF:FF:00, 00:00:00:00:
00:FF), we have to search all four extended Bloom filters. We 
have to form four input headers to search extended Bloom fil-
ter 2. These four input headers are (65535, 4095, 0, 0), (65535, 
4095, 0, 00:00:00:00:00:FF), (65535, 4095, FF:00:00:FF:FF:00, 0), 
and (65535, 4095, FF:00:00:FF:FF:00, 00:00:00:00:00:FF). When 
processing one of the four input headers, we use hash1() function 
to search MaskArray1 and hash2() function to search MaskArray2. 
Two 12-bit masks are obtained and they are ANDed together. Then, 
from the four input headers, we obtain 4 bitmasks that again are 
ORed together to have the intermediate mask for one extended 
Bloom filter. All four intermediate masks that are computed for 
extended Bloom filters 0 to 3 are ORed together to obtain the final 
12-bit mask.

4.3. Extra hash tree

The extra hash tree consists of two layers. Its layer1 node is ex-
actly the same as layer-3 node of the main hierarchical hash tree. 
The layer-2 node uses Ingress Port, VLAN priority, and IP ToS to 
build the hash tables of size 512 because Ethernet Type and VLAN 
ID are both wildcards. All these 4 groups have to be searched for 
each packet. The processes of insertions, deletions and searching 
are the same as the main hierarchical hash tree.

4.4. Stream reduction for update

In GPU processing, each thread is responsible for a rule update 
(either insert or delete). Assuming the data we need already re-
sides in GPU, and device memory is pre-allocated on host side. 
Each thread deals with the necessary steps for updating rules, and 
finally reaches the bucket where the rule is going to be inserted 
or deleted. It is known that a basic data parallel model on GPU 
is called a wavefront. A wavefront groups every 64 data (we will 
refer to data as rules later) for parallel execution. If we have to 
update multiple rules in a single bucket using wavefront, modifi-
cation operations by multiple threads at the same time may cause 
race condition because rules are sorted by priority in the bucket.

If we are in multi-core CPU scenario, we may think of apply-
ing critical section such as spin lock to each bucket. But in GPU, 
applying critical section to the bucket may cause dead lock due to 
lock-step execution. Thus, it is necessary to implement a spinlock-
free update for GPU.

We separate update process into three steps: finding bucket ID, 
streaming reduction and bucket condensing. Each step is blocked 
by a global fence, which means there will be three GPU kernel 
functions for each step and executed sequentially.

1) Finding bucket ID:

We map each rule to a specific thread on GPU and locate buck-
ets that need to be modified. If the update operation is insertion, 
we append rules to the end of the buckets. If the update operation 
is deletion, we disable the rule and leave it blank in the bucket. 
We do not sort rules with priority from high to low in this step 
because of race condition between threads.
2) Streaming reduction:
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Fig. 7. Basic idea of streaming reduction.

To make sure that all rules in the buckets sorted from high to 
low priority, we map each bucket to a specific thread in order 
to avoid race condition. In this case, some buckets will be up-
dated, but others will not, which leaves some of the threads idle 
in SIMD computing process. To avoid computing resource wasted 
from sparse data sets, we re-arrange the buckets so that the buck-
ets which need to be updated are piled together as shown in Fig. 7. 
The goal we are trying to reach is similar to Prefix Sum [14] but is 
simpler and causes less overhead because we do not need data 
permutation to be static. In the figure, we mark the bucket IDs 
which the threads need to modify. The GPU threads just modify 
the buckets corresponding to the aligned bucket IDs.

3) Bucket condensing:

As long as the buckets are re-arranged, we fully utilize the com-
puting resource of GPU and continue to focus on sorting bucket 
contents left from step 1. If the update operation is insertion, we 
traverse from the tail of the buckets and put the appended rules 
back to the correct position of the buckets. If the update operation 
is deletion, we cover the blanked positions by shifting the rule and 
adjust the array to the correct size.

4.5. Extended counting bloom filter for update

Counting Bloom filter [17] promotes Bloom filter by using a 
counter instead of a single bit for each entry in the hash table. 
When an element is inserted into counting Bloom filter, the cor-
responding counters are incremented, deletions can be done by 
decrementing the counters. Counters with non-zero value in count-
ing Bloom filters share the same meaning to bits which sets to 1 
in Bloom filters. Once the counter is zero after a serial of deletions, 
the entry can safely set to zero in Bloom filter. We apply the idea 
of counting Bloom filter to replace original extended Bloom filter 
in the proposed scheme, including 4-bit masks in layer-1 node and 
8-bit masks in layer-2 node of main hierarchical hash tree.

5. Experimental results

We implemented the proposed algorithms on both CPU (i.e., 
host) and GPU (i.e., device). The CPU is an 6-core AMD Ryzen-
5 2600x @ 3.6 GHz with 16 GB DDR4 RAM, and the GPU is an 
AMD Radeon RX580 with 8 GB GDDR5 RAM. The GPU contains 
36 Compute Units (CUs) @ 1257 MHz, each of which contains 64 
stream processors. Therefore, the GPU has 2304 stream processors 
so that we can run 2304 threads concurrently. The operating sys-
tem of host is Ubuntu 18.04.3 LTS (bionic). The compiler used for 
GPU is HIPCC from AMD ROCm, introduced for compiling Hetero-
geneous Compute Interface for Portability (HIP) programs. HIPCC is 
a clang-based C++ compiler appended with AMD GPU API. For CPU 
programs, compiler is the GNU Compiler Collection (gcc, g++).

We use the rulesets generated from ClassBench-ng [16], which 

provides four different characteristics of filter seeds: ACL (ACL1∼5), 
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Fig. 8. CPU search performance of 1K, 10K, and 100K rules.
Table 4
Prefix length distribution of OpenFlow rules.

ruleset Percentage Src IP Dst IP

OF1
non-wildcard values 51.61% 85.22%
prefix lengths 30-32 51.39% 85.21%

OF2
non-wildcard values 90.74% 97.94%
prefix lengths 30-32 90.62% 97.91%

FW (FW1∼5), IPC (IPC1∼2) and OF1/OF2. OF1 and OF2 rulesets are 
real OpenFlow 1.0 rulesets collected from Open vSwitch, but ACL, 
FW and IPC rulesets are traditional 5-tuple rulesets. In order to 
generate OpenFlow rulesets containing characteristics of ACL, FW 
and IPC, we randomly generate the other fields with wildcard ratio 
0.1 for the best case, 0.5 for the average case and 0.9 for the worst 
case. The field values of these fields are randomly selected, and 
the ruleset size we use in experiments are 1K, 10K and 100K. We 
compute the rule size by byte-alignment, where each rule is of size 
53 bytes.

The trace datasets generated by ClassBench-ng consist of 1000K 
packets and they include two types, one contains the packet head-
ers that have 100% matches and another contains the packet head-
ers that incur 10% misses. We consider whether the header fields 
of the packet match the rules in the rulesets. So, the searching pro-
cess only takes the header of trace data to match rules rather than 
injects packet traffic through network interface to test your rules. 
In other words, we focus on the computation instead of network 
I/O plus computation.

Throughput with trace of 100% match
We extend source code of CutTSS and TabTree from 5 fields to 

12 fields and evaluate classification performance with 1K, 10K, and 
100K rulesets. Both CutTSS and TabTree focus on dividing rules into 
groups based on prefix fields and so the performance results re-
main the same in rulesets with various wildcard ratios. In CPU sce-
nario, the results for 100K rulesets in Fig. 8 show that H-HashTree 
extended by Bloom Filter (H-HashTree-BF) has better performance 
than H-HashTree for all rulesets. H-HashTree performs better than 
CutTSS and TabTree for ACL and FW rulesets with all wildcard 
ratios and for IPC rulesets of wildcard ratio 0.1. H-HashTree for 
rulesets IPC-0.5 and IPC-0.9 and H-HashTree-BF for rulesets IPC-0.5 
performs a little worse than CutTSS, but still outperforms TabTree. 
Our proposed algorithm is better than CutTSS and TabTree in most 
cases for 1K and 10K rulesets. The search performance results in 
CPU scenario for rulesets of various sizes are similar. The perfor-
mance in the result is a little of a downgrade for bigger rules set 
(i.e., 100K) but not too much. Therefore, our proposed algorithm 
should be suitable for packet classification in most network envi-
ronments.

For real OpenFlow rulesets (OF) in Fig. 8, there is an obvious 

performance advantage for the proposed schemes over CutTSS and 
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Fig. 9. Average number of memory accesses on CPU for H-HashTree-BF.

TabTree. As shown in Table 4, most OpenFlow rules have longer 
prefix length in source and destination IP fields, resulting in the 
worst-case performance for CutTSS and TabTree. The performance 
of the H-HashTree-BF is slightly worse than H-HashTree because 
the benefit gain from extended Bloom filter during searching hash 
tree does not pay off the overhead of checking extended Bloom 
filter. But this situation does not happen on GPU which we will 
describe subsequently. Fig. 9 shows the search performance on CPU 
in terms of number of memory accesses.

By considering the throughput (13.7 MPPS) required to support 
one 10Gpbs link, it is obvious that CPU is not powerful to support 
the needed computation capability of packet classification. As a re-
sult, we can resort to GPU for the required computation capability.

In GPU scenario, H-HashTree-BF has better performance than H-
HashTree in all rulesets as shown in Fig. 10. The impact of checking 
extended Bloom filter for bitmask is not a shortcoming anymore 
because of the strong computational capability and efficient con-
text switch between threads for memory latency hiding on GPU. 
The configuration of GPU performance evaluation uses.

Fig. 10 shows the search performance in GPU scenario. The 
GPU configuration is set as BLOCK_PER_GRID=72 and THREAD_
PER_BLOCK = 512. For 100K rulesets, the throughput of our pro-
posed scheme can reach up to 60∼100 Mpps. In contrast to the 
CPU scenario, using GPU to classify packets in large rulesets is 
more efficient. The throughputs of 10K and 1K rulesets can reach 
up to 210 MPPS and 333 MPPS, respectively. Using GPU can effi-
ciently accelerate the classification of the packets.

Throughput with traces of 10% miss ratio
In the practical network environment, all packets on the Inter-

net will pass through the classifier. When a packet miss happens, 
ovs-vswitchd or the controller will specify a rule to classify the 
miss-classified packet. This is how rule updates are triggered. In 
the previous experiments, the performance is based on the as-
sumption of packets that will not be misclassified in the algorithm. 

We need to figure out how long it takes to identify packet miss in 
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Fig. 10. GPU search performance of 1K, 10K, and 100K rules.
Table 5
CPU throughputs of 10% miss and all match among different wildcard ratios and OF 
rulesets.

Search (MPPS) all match 10% miss

H-HashTree WD 0.1 ruleset 4.746 4.919
H-HashTree WD 0.5 ruleset 3.554 3.724
H-HashTree WD 0.9 ruleset 3.297 3.036
H-HashTree (OF) ruleset 4.341 4.237
H-HashTree-BF WD 0.1 ruleset 5.114 5.409
H-HashTree-BF WD 0.5 ruleset 3.844 4.033
H-HashTree-BF WD 0.9 ruleset 3.592 3.250
H-HashTree-BF (OF) ruleset 4.272 4.245
CutTSS ruleset 3.059 2.582
CutTSS OpenFlow (OF) ruleset 0.307 0.177
TabTree ruleset 1.443 1.322
TabTree (OF) ruleset 0.334 0.181

Table 6
GPU throughput comparison with different wildcard ratios and OF rulesets.

Search (MPPS) all match 10% miss

H-HashTree WD 0.1 ruleset 77.5 81.6
H-HashTree WD 0.5 ruleset 42.2 43.8
H-HashTree WD 0.9 ruleset 41.6 39. 9
H-HashTree (OF) ruleset 49.2 49.7
H-HashTree-BF WD 0.1 ruleset 104.5 118.7
H-HashTree-BF WD 0.5 ruleset 63.3 67.9
H-HashTree-BF WD 0.9 ruleset 50.4 51.5
H-HashTree-BF (OF) ruleset 4.3 4.2

order to take the needed action for rule updates. To simulate per-
formance with packet misses, we randomly exclude 10% rules from 
the ruleset, and build hash tree with the remaining 90% of rules 
(so do CutTSS and TabTree). In Table 5 and 6, we average through-
puts of all 100K rulesets with same wildcard ratios for traces of 
100% match and 10% miss. In CutTSS and TabTree, they define the 
highest priority of rule saved in a tuple as the priority of the tu-
ple and arrange tuples in the order of priority from high to low. 
They search packets from the tuple with highest priority and re-
turn when priority of current match rule is higher than priority of 
the next tuple. Because even though we can match rules in the fol-
lowing tuples, the priority won’t be higher than the current one. 
The reason why performance downgrades in CutTSS and TabTree 
with the trace of 10% miss is because if we cannot find a matched 
rule, we must exhaustively search all tuples.

For H-HashTree and H-HashTree-BF with wildcard ratios 0.1 and 
0.5, the performance of 10% miss is better than 100% match, but 
downgrades in wildcard ratio 0.9 and nearly equal in real Open-
Flow ruleset (OF). Although we give priority to each hash table like 
CutTSS and TabTree, we do not search packet from hash table of 
the highest priority to the lowest, which means the performance 
of our approach will not necessarily downgrade like CutTSS and 

TabTree. Generally speaking, our approach tends to have better re-
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Fig. 11. CPU update times of 100K ACL, FW, and IPC with different wildcard ratio 
and OF rulesets.

action to packet misses when wildcard ratio of a ruleset is not 
high.

Evaluation on Incremental Update
To perform the experiments on updates, we first build data 

structure with the whole ruleset and randomly select 5% rules for 
deletion and insertion, then average deletion and insertion times 
are obtained (shown as μsec per rule). Rule updates can be per-
formed in CPU or GPU. If update operations are performed in CPU 
and search operations are executed in GPU, the modified data 
structures after inserting or deleting rules have to be copied to 
GPU.

In CPU scenario, as we expect that H-HashTree has better per-
formance than H-HashTree-BF because we have to maintain ex-
tended counting Bloom filter and extra hierarchical hash tree. The 
performance drops about 50% in Proposed-scheme-BF as shown 
in Fig. 11. Compared with CutTSS and TabTree, H-HashTree-BF is 
still better because we only have to search at most 6 hash ta-
bles (4-layer main hash tree plus 2-layer extra hash tree) to reach 
the buckets that need to be updated. For each bucket needed to 
be modified, we insert rules according to their priorities, and we 
delete by disabling rules from the bucket and adjust the bucket 
size based on the number of remaining rules in this bucket. In 
GPU scenario, we pre-allocate extra device (GPU) memory that is 
really needed in order to handle rule updates on GPU. The reason 
is that technically we cannot do dynamical device memory alloca-
tion while kernel function is running on GPU.

Updating 5% rules randomly chosen from 100K rulesets (means 
launch 5K rules to GPU for update) in fact does not fully utilize 
the computational resource of GPU. But we still get an acceptable 
speedup compared with CPU except in FW-0.9 ruleset as shown 
in Fig. 11. We observe that sizes of many buckets (also known 
as number of rules saved in the buckets) in FW-0.9 rulesets scale 

much more than other buckets, resulting in unbalanced concur-
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Table 7
Update impact on search performance.

Search (MPPS)

ruleset H-HashTree-BF H-HashTree-BF with 5% 
updates mixed

WD ratio 0.1 105.687 105.65
WD ratio 0.5 72.319 63.469
WD ratio 0.9 46.915 46.869
OF 54.379 54.366

rent execution of threads on GPU. For example, if there are two 
threads among the same wavefront, one thread needs to update a 
bucket with 5 rules but another thread needs to update a bucket 
with 900 rules, the former thread must wait for later thread to 
complete even though it has finished its work earlier. The same sit-
uation also happens during searching FW-0.9 on GPU. The reason 
why we explain it until now because the imbalance of concurrent 
execution impacts the most in updates. Comparing H-HashTree-
BF with H-HashTree on GPU, we can see that the performance 
of H-HashTree-BF drops only about 25%. To measure how update 
operation affects search performance on GPU, we mix 5% rule up-
dates while searching packets. The measurement can be concluded 
as below.

mixed_per f = 1 (sec) − time of update 5% rules

avg. search time of each packet

In Table 7, update operations show nearly no significant impact 
to search performance. In the case of wildcard ratio 0.5 rulesets, 
which is also the worst case among the four types of rulesets, 
search performance of H-HashTree-BF with 5% updates mixed is 
about 87.7% of that without mixed updates.

Memory Consumption
In this paper, we do not adjust hash table size according to 

the utilization rate. The hash table size of each layer is predefined 
as mentioned previously. As the wildcard ratio of the ruleset in-
creases, the memory consumption grows dramatically as shown 
in Table 8 while CutTSS and TabTree remain low memory foot-
print. The different memory consumption between H-HashTree-BF 
and H-HashTree is from extended counting Bloom filters and extra 
hash tree, causing about 100 bytes or more per rule in average.

Comparison with previous work
The multi-layer Bloom filter algorithm implemented on NVIDIA 

GTX-580 GPU in [31] achieves the throughput of 39-58 MPPS 
for 2K ACL rules and the throughput of 43.9 MPPS for 1K FW 
rules. Our proposed scheme obviously outperforms the multi-layer 
Bloom filter algorithm. Since the extended Bloom filters are not 
used in [31], the updates are not supported.

For the entropy-based hash algorithm proposed in [11], the 
throughput is 4 MPPS using IG scheme and 2 MPPS using MSB 
for 100K ACL in CPU scenario. However, our throughput is be-
tween 4 and 5 MPPS. Especially, the performance of our proposed 
in smaller rules is better than the IG scheme in [11]. The through-
put of 1k-fw in our experiment is at least 10Mpps but their result 
is about 4.1Mpps.

In [11], the throughput is 4 MPPS using entropy and 2MPPS 
using MSB for 100K ACL in CPU scenario. The throughput of our 
proposed schemes is between 4 MPPS and 5 MPPS. Especially, 
the performance of our proposed in smaller rules is better than 
the method in [11]. The throughput of 1K-FW ruleset in our ex-
periment is at least 10 MPPS but their result is about 4.1 MPPS. 
In addition, our performance evaluation is conducted for 12-field 
rules while the results in [11] are for 5-field rules. Since the rules 

may contain wild-cards in some fields, they must be duplicated 

146
Table 8
Memory consumption of 100K ACL, FW, IPC with different wildcard ratios and OF 
rulesets.

Memory (bytes/rule)

ruleset H-HashTree H-HashTree-BF CutTSS TabTree

ACL-0.1 62.246 144.788
ACL-0.5 106.812 205.692 71.948 67.478
ACL-0.9 1,749.996 1,850.644
FW-0.1 62.512 147.446 70.761 69.111
FW-0.5 100.672 202.408

FW-0.9 1,716.9 1,820.406
IPC-0.1 62.02 142.52
IPC-0.5 105.335 201.78 71.833 65.062
IPC-0.9 1,798.03 1,896.245
OF 69.905 146.555 86.348 70.858

among the 256K sub-tables indexed by 18-bit keys. As a result, the 
total number of rules is significantly expended to up to about 15 
million rules for a 100k rule-set. Based on the proposed informa-
tion entropy-based criterion, the maximal Information Gain (IG) is 
computed for finding a uniform hash key 18 bits from source and 
destination addresses are determined. Since computing IG is a pre-
computation process, dynamic updates cannot be supported.

Suppose that the packet length is 64 bytes. The performance 
of 10K-ACL with 10% wildcard ratio of our proposed scheme is 
up to 109Gbps. To compare with [11], their performance is up 
to 125Gbps for 10K-ACL. The difference comes from the operat-
ing frequency of GPU where they use 1733Mhz NVIDIA GTX-1080 
GPU and we use 1257Mhz AMD RX580. Our proposed algorithm is 
more suitable for the future networks than [11] because we con-
sider 12-field rules and support rule updates.

6. Conclusions

In this paper, we proposed a packet classification algorithm 
using hierarchical hash tree which supports both high searching 
speed and fast updates. We implement extended Bloom filters to 
check whether we can skip unnecessary search in main hash tree. 
The advantage of extended Bloom filters is that its performance 
impact is not affected by types of rulesets. We isolate rules which 
cannot be hashed by extended Bloom filter and put them in an 
extra hash tree. We search the extra hierarchical hash tree only 
when the miss match of bitmasks probably happens, resulting in 
potential throughput improvement by searching smaller hash tree 
with fewer rules. In both main and extra hierarchical hash trees, 
we define a threshold to make sure the subset rules are small 
enough for linear search and stop further creating nodes to the 
next layer. We showed that our method is also feasible on parallel 
computing platform like GPU. Due to powerful computation capa-
bility and special hardware architecture designed for GPU, we can 
easily overcome the defects of our algorithm implemented by CPU 
such as the relatively high overhead needed in extended Bloom fil-
ter.

The proposed H-HashTree performs better with state-of-the-art 
algorithms in both searches and updates. The proposed schemes 
have better reaction to packet miss (downgrades only in the worst 
case), which makes our approach suitable for frequent updates in 
SDN environment.

CRediT authorship contribution statement

Yu-Hsiang Lin: Conceptualization, Methodology, Software. Wen-
Chi Shih: Data curation, Formal analysis, Writing – original draft.
Yeim-Kuan Chang: Conceptualization, Methodology, Project ad-

ministration, Writing – review & editing.



Y.-H. Lin, W.-C. Shih and Y.-K. Chang Journal of Parallel and Distributed Computing 167 (2022) 136–147
Declaration of competing interest

To the best of our knowledge, the named authors have no con-
flict of interests or otherwise.

References

[1] fmadio, What is 10GBIT Line Rate? in: the Packet Sniffer Blog, Fmad Engineer-
ing, June 30, 2021, https://www.fmad .io /blog -what -is -10g -line -rate .html.

[2] AMD, Inc., AMD GCN3 Instruction Set Architecture rev1.1, August 2016.
[3] AMD, Inc., AMD GCN1 Instruction Set Architecture rev1.1, December 2012.
[4] AMD, Inc., White Paper | AMD Graphics Cores Next (GCN) Architecture, June 

2012.
[5] Y.-K. Chang, H.-C. Chen, Fast packet classification using recursive endpoint-

cutting and bucket compression on FPGA, Comput. J. 62 (2) (Feb. 2019) 
198–214.

[6] Yeim-Kuan Chang, Tung-Yin Chi, Hash-based OpenFlow packet classification on 
heterogeneous system architecture, in: Eleventh International Conference on 
Ubiquitous and Future Networks, 2019.

[7] J. Daly, E. Torng, TupleMerge: building online packet classifiers by omitting bits, 
in: IEEE ICCCN, 2017.

[8] J. Daly, V. Bruschi, L. Linguaglossa, et al., TupleMerge: fast software packet pro-
cessing for online packet classification, IEEE/ACM Trans. Netw. 27 (4) (2019) 
1417–1431.

[9] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, Sotiris Ioanni-
dis, GASPP: a GPU-accelerated stateful packet processing framework, in: 2014 
USENIX Annual Technical Conference.

[10] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon, APUNet: re-
vitalizing GPU as packet processing accelerator, in: USENIX Symposium on 
Networked Systems Design and Implementation, 2017.

[11] S. Greenberg, T. Sheps, D.A. Leon, Y. Ben-Shimol, Packet classification using 
GPU and one-level entropy-based hashing, IEEE Access 8 (2020) 80610–80623, 
https://doi .org /10 .1109 /ACCESS .2020 .2990331.

[12] P. Gupta, N. McKeown, Packet classification on multiple fields, in: ACM Sig-
comm, August 1999.

[13] P. Gupta, N. McKeown, Classifying packets with hierarchical intelligent cuttings, 
IEEE MICRO 20 (1) (2000) 34–41.

[14] M. Harris, S. Sengupta, J.D. Owens, Parallel prefix sum (scan) with CUDA, in: H. 
Nguyen (Ed.), GPU Gems 3, Addison Wesley, Aug. 2007, pp. 851–876.

[15] Cheng-Liang Hsieh, Ning Weng, Wei Wei, Scalable many-field packet classifica-
tion for traffic steering in SDN switches, IEEE Trans. Netw. Serv. Manag. 16 (1) 
(March 2019).
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