
Received March 7, 2020, accepted March 25, 2020, date of publication April 24, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2990331

Packet Classification Using GPU and One-Level
Entropy-Based Hashing
SHLOMO GREENBERG , (Member, IEEE), TOMER SHEPS , DAVID A. LEON , AND
YEHUDA BEN-SHIMOL , (Member, IEEE)
School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.

Corresponding author: Shlomo Greenberg (shlomog@bgu.ac.il)

This work was supported in part by the HiPer Consortium within the frame of the Israeli Innovation Authority’s MAGNET Program.

ABSTRACT The demand for on-line analyzing of internet traffic for both security and QoS consideration
directly increases as a function of using diverse applications and as malicious attacks increase. This paper
presents a new fast parallel packet classification algorithm based on entropy hashing. The algorithm uses
a one-level hashing data structure and enables partitioning a very large rules-set into smaller uniformly
distributed sub-rules look-up tables based on maximum entropy and Most Significant Bit (MSB) pattern
hash keys. This minimizes the classifier searches only to the relevant appropriate look-up table using the
same hash key, and therefore significantly shortens the classification process. A further speed-up factor is
achieved by parallelizing the classification algorithm using Nvidia Graphics Processing Unit (GPU). The
proposed algorithm is applied to both ACL and FW applications using common synthetic rules-sets of size
up to 500k rules. The simulation results show that the proposed algorithm outperforms existing classifiers
in terms of both speed up and memory utilization. The required memory size is significantly reduced, and a
classification speed-up factor of up to 200 is demonstrated compared to a similar serial approach.

INDEX TERMS Packet classification, hashing, entropy, information gain, GPU, parallelism.

I. INTRODUCTION
The rapid increase of both network bandwidth and malicious
attacks, as well as the increased use of diverse applications,
requires analyzing and controlling internet traffic for both
security and QoS (Quality of Service) considerations while
gaining line speeds [1]. Packet classification is known as the
process of selectively identifying different classes of internet
packets, classifying them into flows, and applying the same
treatment to all packets belonging to the same flow according
to certain predefined rules. To classify a packet as belonging
to a specific flow or set of flows, a packet classifier must
perform a fast search over a large set of filters and be able to
find the matching rule among all the rules in a large rules-sets
using multiple fields of the packet header [2].

To face the growing need of real-time on-line packet
classification, while supporting wire speed of hundreds
of Gbps, various classification algorithms have been
developed, based on various data structures (e.g., Tries,
Hash tables, etc.) [3]–[6], and various platforms such as
pure CPU software, ASIC, FPGA and GPUs [7]–[11].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

Some architectural solutions for packet classification suggest
the use of Ternary Content Addressable Memory (TCAM)
devices [10], [12]–[14] in order to meet performance con-
straints imposed by high-speed links [2]. However, TCAMs
suffer from high cost, high power consumption, storage
inefficiency, and limited scalability to long input keys [2].
Taylor [2] provides a survey and taxonomy of packet classi-
fication techniques describing some high-level classification
approaches. Some naive approaches use a linear search to
examine all entries in the rules-set (which are pre-arranged
in decreasing priority order) against the incoming packet.
This may lead to an exhaustive search in case of large
rules-sets. Therefore, most approaches suggest using a pre-
processing phase for partitioning the original rules-set into
smaller sub-tables using decision tree [6], [15], or hashing
function [16], [17].

A common approach makes use of a decision tree data
structure [4], [6] to graphically represent the rules-set. The
decision tree is constructed from all the rules in a given rules-
set, in such a way that each level in the tree represent a
different header field (of the incoming packet), and each leaf
represents a specific rule (or sub-sets of rules). Then, in the
classification stage, the algorithm uses the packet header

80610 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-1385-8394
https://orcid.org/0000-0003-0456-3348
https://orcid.org/0000-0001-8036-9964
https://orcid.org/0000-0002-4905-2085
https://orcid.org/0000-0003-0801-8443


S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

fields to traverse the decision tree in a top-down manner [6],
[15], [18]. Dong et al. [15] propose a heuristic method, based
on information entropy, to efficiently build a classification
decision tree with relatively small storage requirements. The
decomposition approach suggests splitting the multiple fields
search into instances of single field searches, performing an
independent search on each packet field, and then combines
the results [8], [19]. However, most algorithms that support
multiple fields have been designated for limited rules-set
sizes of up to 15k rules [2].

Gupta and McKeown [20] present an iterative Recursive
Flow Classification algorithm, for which in each iteration
only a subset of the inspected fields is used to generate a
cross-product table, and all unmatched entries are eliminated
for storage saving. Rules-set partitioning is usually carried
out using some sorting criteria (such as entropy or MSB) to
define different flow categories [15], [16], [21]. For example,
a tuple space approach partitions the rules-set according to
some specified bits of each field in the filters, and then probe
a sub-table using simple exact match searches [22]. Two other
well-known tuple-based algorithms, rectangle search [23]
and Entry Pruned Tuple Search [24], have been proposed to
improve the performance of the tuple space search.

When adopting an existing packet classification approach,
a tradeoff between speed performance and high storage effi-
ciency should be considered. Algorithms that present supe-
rior speed performance usually suffer from the problem of
high memory requirements [25]. Although, the algorithms
based on decision trees [26]–[28] and cross-product [20],
[29] present the fastest search performance they suffer from
poor storage efficiency, whereas the Pruned Tuple Space
Search [24] and Independent Sets [30] algorithms typically
have the least storage requirements [21]. Hasan et al. [17]
describe three major techniques families for performing
Longest Prefix Matching (LPM): using Ternary Content
Addressable Memory (TCAM), tries-based schemes, and
hash-based schemes. A collision-free hashing scheme pro-
poses an efficient storage approach and provides both fast
classification and significantly lower power consumption
compared to TCAM [31]. Moreover, unlike tries, hash
tables employ a flat data-structure, achieving potentially
small memory sizes suitable for on-chip storage, and key-
length-independent O(1) latencies [17].

Hardware-based algorithms are used to accelerate exist-
ing classification algorithms using different hardware plat-
forms such as FPGAs [7], [10], [11], [32], multiple-core
CPUs [8], and GPUs [22]. Some packet classification algo-
rithms have been implemented using GPU to maintain line
speed [22], [33], [34]. Varvello et al. [22] demonstrate
GPU-accelerated versions for three classification search
algorithms: linear search, tuple search, and bloom filters
search. The bloom filters algorithm demonstrates the highest
classification speed (up to 115 Mpps) for small rules-sets
(up to 5k rules). However, the performance dramatically
decreases (down to 20 Mpps) for large rules-sets of above
100k rules. Yang et al. [35] suggest a Discrete Bit Selection

(DBS) algorithm, for which some effective bits are consecu-
tively chosen from the packet header fields and serve as the
hash key mask in filling and probing the hash table.

A. RELATED WORK
Kang and Deng [33] propose a GPU-based linear search
framework using a meta-programming technique for packet
classification. They investigate the previous DBS hash-based
algorithm and demonstrate a speedup factor of 17 in compar-
ison to a CPU-based implementation. The GPU implemen-
tation delivers an average throughput of 10.7 and 4.8 Mpps
with rule number of 500 and 2k, respectively. Zhou et al. [34]
propose a GPU implementation of a range-tree search and
a decomposition-based bit vector (BV) tree approach. The
algorithm scales well across a range of rules-set sizes from
512 to 4k rules and demonstrates a throughput improvement
factor of 1.9 compared with the implementation of another
multi-core platform.

Choi et al. [16] use a heuristics approach for choosing
the specific packet header fields used for hashing. A com-
bination of 17-bits from the port and protocol fields, with
16-bits selected from the IP source and destination addresses,
were examined. They propose two-level hashing using two
different hash keys: a first level hashing based on maxi-
mum entropy derived from the port and protocol fields, and
a second level hashing based on the MSB pattern of the IP
fields. Although this approach presents promising results in
terms of speed performance (207 memory accesses for 500k
rules), it suffers from a very poor memory utilization and
requires a huge storage memory (32 GB in the worst-case
scenario). This disadvantage is not acceptable for on-chip and
GPU hardware implementation. Motivated to improve the
memory consumption and still utilize the potential speed up
by using hashing, we propose a new one-level unique hashing
algorithm based on information entropy and a GPU-based
implementation for achieving further significant speed-up
factor using parallelism approach.

Varvello et al. [22] analyzed typical non-cryptographic
universal hash functions due to their computation simplic-
ity and implemented equally-sized sub-tables using cuckoo
hashing [22], [36] , which provides constant lookup time.
However, this method may require rehashing, that is, select-
ing a new set of hash functions and reinserting all rules.

This paper presents a parallel hash-based packet classifi-
cation algorithm. The proposed algorithm uses a one-level
hashing data structure and enables partitioning a very large
rule-base list into smaller uniformly distributed sub-rules
lookup tables based on maximum entropy and MSB pattern
hash keys. A further speed-up factor is achieved by par-
allelizing the classification algorithm using NVIDIA GTX
1080 GPU. The proposed algorithm is applied to both ACL
and FW applications, using common rules-sets of size up to
500k rules. The simulation results show that the proposed
algorithm outperforms existing classifiers in terms of both
speed up and memory utilization. The required memory size
is significantly reduced, and a classification speedup factor of

VOLUME 8, 2020 80611



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

more than 200 is demonstrated compared to a similar serial
approach.

The rest of this paper is organized as follows: Section II
presents the proposed classification algorithm and the imple-
mentation approach. Section III describes the GPU-based
parallel implementation. Section IV presents the experiments
and results. Finally, conclusions and summary are given in
Section V.

II. THE PROPOSED ALGORITHM AND IMPLEMENTATION
METHODOLOGY
This section formalizes the packet classification problem
and presents the proposed classification algorithm in detail.
The main idea is to efficiently partition a large rules-set
into smaller sub-tables enabling fast line speed classification
while using minimal memory resources. Different kind of
hash functions is proposed to uniformly distribute the orig-
inal rules into a hash table composed of 256k entries for
18 bits hash key. Each entry in the hash table contains a 64-
bits pointer to a different small sub-table and is associated
with a specific dynamic rule array with a typical size of
less than 1k rules. Therefore, only one memory access is
required for approaching a specific rule array, for which a
linear search is performed to find the final rule match. The
classification process is composed of two main phases: the
off-line pre-processing phase and the real-time packet match-
ing phase. In this section, we first present the problem defi-
nition and describe the rules structure and its efficient repre-
sentation. Then, the proposed hash functions and the selected
hash keys are presented, and finally, the two phases of the
proposed classification algorithm are described.

A. PROBLEM DEFINITION
The problem of packet classification is defined as the process
of matching an incoming packet to one or more predefined
rules from a set of n rules according to given criteria. Let R =
{r1, r2, . . . , rn} be a set of n rules. Each rule ri is described
as ri = {c1, c2, . . . , cm, priority, action} and composed of m
criteria and two attributes: priority and action. Each criterion
represents a match condition such as an exact match, prefix
match or range checking. Each rule is examined for a match
with some specific fields in the packet header according to
different criteria.

A priority attribute is assigned to each rule to handle the
case for which an incoming packet matches multiple rules.
In the case of a match, a specific action is applied to the
incoming packet, according to the action attribute of the
matched rule. Typical rules-sets are application-oriented and
are differently characterized using different header fields.
In this work, we use two common rules specifications: Access
Control List (ACL) and Firewall (FW). ACL specifications
are characterized mainly by filtering IP-addresses and there-
fore have more specific IP fields, while FW is more related
to applications and protocol filtering and therefore the rules
list contains more specific port and protocol fields [37].

TABLE 1. 5-tuple rule-set example*.

A packet p is represented by an ordered m-tuple
{f1, f2, . . . , fm}. The elements of the m-tuple are extracted
from specific fields of the packet p, for example, source and
destination IP addresses. The m-tuple complies to a prede-
fined rule r = {c1, c2, . . . , cm, priority, action} if each of
the elements of the m-tuple matches each of the m criteria
correspondingly.

Although this work addresses the general problem of
packet classification, the common IPv4 protocol, and the
specific 5-tuple classification, are used as an example for
evaluation purposes and comparison with previous work.
However, the proposed approach can be easily applied to
IPV6 aswell, andworkwell with any different kind of general
n-tuples. The appropriate selection of the fields used for the
hash key is critical for proper flow classification.

The classification of IPv4 packets usually uses a 5-tuple
classification using 5 fields of the packet header: IP source
address (SA) and IP destination addresses (DA), each 32 bits
in length, source port (SP) and destination port (DP) num-
bers, each 16 bits in length and a transport-layer protocol
(8-bits). Table 1 shows a simplified example taken from [32],
where each rule contains different match conditions for the
5 header fields: prefix match for SA/DA, range match for
SP/DP, and an exact match for the protocol field. A packet
is being considered to successfully match a rule only if all
the fields within that rule are matched. In the case of a match,
the action attribute of the matched rule is carried out. In case
an incoming packet matches multiple rules, only the highest
prioritized rule is considered and its specific action is the one
to be applied to the packet.

B. RULES DATABASES AND EFFICIENT REPRESENTATION
Each rule can be related to several header fields with different
kind of matching types (like exact and long prefix match)
using wildcards to allow multiple addresses combination and
range checking. Our test data is generated using the common
ClassBench suite of tools [37] to provide synthetic rule-sets
representing real-life rules. The ClassBench produces syn-
thetic rules-sets that accurately model the characteristics of
real rules-sets. The tools provide varying size and complex
rules-sets, along with a sequence of packet headers to exer-
cise the synthetic rules-sets. The size of the rule-sets varies
from thousands to hundreds of thousands of rules. The rules

80612 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

databases which have been used to evaluate the classification
performance in this work are synthesized from two typical
applications: ACL (Access Control List) and Firewall.

The ClassBench adapts the Classless Interdomain Routing
(CIDR) [38] allowing to specify a subnet within an exist-
ing network, e.g. the source IP field may contain the form
192.0.0.0/1. The use of the prefix match enables binding
multiple possible exact matches into a single rule. A priority
and a specific action are assigned to each rule. Although a
5-tuple representation requires only 13 bytes for classifica-
tion, a typical rule may contain up to 32 bytes, including
IP source and destination addresses as well as Ports ranges,
protocol, action type (accept or deny) and a priority field
(8-16 bits). The data structure of each rule is zero-padded
to get a uniform memory data alignment. Efficient rule rep-
resentation is achieved by converting the SA and DA fields
into ranges using a range matching condition in place of
a prefix match. This allows the matching to be carried out
by checking a range condition using only two comparison
operations rather than using several bit-wise operations (up to
32 XOR operations) per a prefix match.

C. HASH TABLE AND KEY FUNCTIONS
The proposed algorithm uses a one-level hashing data struc-
ture and enables partitioning a very large rules-set into many
much-smaller, uniformly distributed sub-rules lookup tables,
based on maximum mutual information and Most Significant
Bit (MSB) pattern hash keys. Then, the same hash keys, used
for partitioning the rules-set, are also used by the classifier.
This minimizes the classifier searches to the relevant sub
ruleset to which the incoming packet belongs to, and therefore
significantly shortens the classification process.

The proposed hash key is constructed from some selected
bits (16-18 bits) from the packet header fields which com-
pose the classification space. The number of the chosen bits
defines the hash key length, and therefore the size of the hash
table, that is, for 16-bits key length a hash table with 64k
entries is created. Each entry of the hash table points to a
specific smaller sub ruleset. Therefore, the classifier needs
only one memory access to approach any of the sub rulesets.
Then, a linear search is performed to match the incoming
packet with the rules belonging to that sub ruleset. The use
of only one hashing level together with a proper selection
of the hash key bits, and performing a linear search on a
much smaller sub-rules table has been found to be efficient
in terms of both speed and memory consumption for rules
sets of up to 500k rules. The selection of the hash-key
length determines both the hash table size and the number of
the rules sub-tables. Although, a choice of shorter hash-key
yields a smaller hash table, and fewer sub-tables, the average
sub-table size increases. Since the size of a sub-table directly
affects the linear search performance, a trade-off between
memory size and classification performance should be con-
sidered. The selection of 16-bits and 18-bits hash keys results
with a reasonable hash-table size of 512k and 2M and a

total required memory of 130M and 290M correspondingly
(for 100k rules-set). However, the 18- bits key is preferable
since the average sub-table size is lower (about half the size
of 16-bits for large rule-sets), and therefore the linear search
time is twice faster. The choice of a larger hash-key yield a
much larger memory size without significant improvement of
the linear search.

The preferred hash key type is determined according to
the distribution of the given rule dataset. The given rules are
distributed into sub-tables according to the selected hash type
(i.e., MSB or Entropy-based) and the size of the hash key.
The rules distribution provides sufficient statistics regarding
the location of each rule in each sub-table, and therefore,
assuming uniform packets distribution, one can evaluate in
advance the required time for execution of the linear search
in each table. The proposed entropy-based hashing makes use
of the given rule set data structure and leads to uniformly dis-
tribution of the rules. The experimental results demonstrate
the superiority of the entropy-based hashing using 18-bits key
length (for both ACL and FW).

Consider a large rules-set R with NR rules, where R =
{r1, r2, . . . , rNR}, and each rule ri is represented by a sequence
of n bits, B = 〈bi1, bi2, . . . , bin〉. We propose to use infor-
mation entropy-based criterion - the maximal Information
Gain (IG), to find a uniform hash key with k < n bits.
A proper hash key should yield a relatively small number
of rules replications, considering the presence of ‘‘wildcard’’
bits in the rule’s fields. The IG reflects the decrease in mutual
entropy after choosing a specific bit to be included in the hash
key, and therefore may be considered as a good criterion for
selecting the appropriate bits.

The entropy of a given ruleset R is given by:

H (R) = −
∑
ri∈R

P(ri) log2 P(ri) (1)

where P(ri) is the probability of appearence of rule ri.
The selection of a proper k bits key should consider both

the distribution of the binary values ‘0’ and ‘1’ and the
number of wildcards in each rule. Consider that each rule
ri contains m∅i wildcards, therefore the number of distinct
combinations of B associated with rule ri is 2m

∅

i , and for
NR rules there are Ntot =

∑NR
i=1 2

m∅i combinations repre-
senting R (i.e. the number of rules considering their replica-
tions). The probability P(ri) can be expressed in terms of m∅i
as:

P(ri) = 2m
∅

i /Ntot (2)

Therefore, the entropy of the ruleset R given in Eq. (1) can
be expressed as:

H (R) =
1
Ntot

NR∑
i=1

2m
∅

i

(
log2 Ntot − m

∅

i

)
(3)

VOLUME 8, 2020 80613



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

The IG for a given rule-set R and bit bj is given by the
following equation:

IG(R, bj) = H (R)− H (R|bj)

= −

NR∑
i=1

P(ri) log2(ri)−
NR∑
i=1

P(ri|bj) log2
(
P(ri|bj)

)
(4)

where P(ri|bj) is the probability of rule ri given bit bj.
Considering the rules replications, Eq. (4) can be expressed

as:

IG(R, bj) = log2(Ntot )

−
1
Ntot

[
N ∗0 log2 N

∗

0 + N
∗

1 log2 N
∗

1 + 2N∅
]

(5)

where N ∗0 = N0+N∅, N ∗1 = N1+N∅, and N0,N1,N∅ are the
total number of the replicated rules given by:

N0 =
∑
{ri|bj=0}

2m
∅

i , N1 =
∑
{ri|bj=1}

2m
∅

i , N∅ =
∑
{ri|bj=∅}

2m
∅

i −1

Consider a rule matrix composed of NR rows and n columns.
Each row represents a specific rule, composed of a sequence
of n bits, 〈bi1, bi2, . . . , bin〉. Equation (4) is used to calculate
the IG for each column in the rule matrix (column j is com-
posed of the bij bits of all rules, where i = 1, . . . ,NR). The
index of the column having the highest IG is used to select
the first bit of the hash key (out of the n bits representing
a rule). Then by applying an iterative process the additional
bits having the highest IG can be found using a decision tree
approach. Thewell-known ID3 algorithm [39]may be used to
calculate such decision trees. However, using a decision tree
scheme is inappropriate for extracting the proper hash key
bits since different bits may be selected traversing different
paths of the tree resulting in multiple keys. Moreover, search
paths may be of different lengths and thus yielding hash keys
of different length. Therefore, the k-bits hash key are chosen
as the indexes of the columns in the rule matrix having the k
highest IG values.

A heuristics approach has been adopted in choosing the
specific packet header fields used for hashing. A combina-
tion of the port and protocol fields, with some selected bits
from the IP source and destination addresses, were examined.
Specifically, two hash keys based on maximum IG and the
MSB pattern of the IP address have been examined [16]. The
MSB pattern might be considered as a good choice since
the wildcards are usually applied to the LSB pattern of the
packet header fields. The IG entropy-based key has been
used since entropy is maximized when all entries have the
same probability of occurrence, and therefore a maximum
entropy-based hash key tends to uniformly distribute the rules
in the sub-tables [16]. Moreover, the maximum IG-based key
also tends to favor bits associated with a smaller number
of wildcards, resulting in a smaller number of replicated
rules.

FIGURE 1. The preprocessing phase using 18 bits hash key.

The IG is calculated using the original rules-set with
regards to the specific IP source and destination fields
(32 bits each), forming a rule matrix of NR × 64 bits. The
IG calculation results in 64 different IG values IG(R, bj),
j = 1, . . . , 64. For each IP address field, the highest nine
IG values are selected, pointing at specific 18-bit positions
within the SA and DA fields. These specific 18 bits, which
represent the maximum IG are concatenated and used as
the entropy-based hash key. Therefore, a hash table of size
of 256k is created.

The MSB pattern hash key is derived by concatenating
the nine MSB bits of each IP header field, providing 18-bits
MSB hash key. IP fields may contain wildcards bits, and
therefore the number of the actual rules is expanded and can
be extremely large. However, since theMSB pattern of an IP
address usually contains much fewer wildcards, it is expected
to require less memory space.

The requiredmemory space is determined by the size of the
hash table and the total number of rules in the final sub-tables.
Our proposed one-level entropy-based hashing using the IP
fields require only 2MB for storing the entire rules database.
The space complexity of the hash table is O(2

∑
ki · p) where

ki is the size of the hash key at level i and p is the size of the
pointer [16]. Therefore, the proposed approach demonstrates
a complexity of O(2k · p), where k is the size of the hash key
and p is the size of the pointer, making it feasible for GPU
implementation.

D. PRE-PROCESSING PHASE
The proposed algorithm consists of two main phases: an
off-line pre-processing phase, and a real-time classification
phase. During the pre-processing phase, the partitioning of
the original rules-set into smaller sub rulesets is carried out,
based on the selected classification fields. A dedicated hash
table is generated, and the rules are inserted according to the
selected hash key into the different sub-tables. A hash table
with 256k entries is created for an 18-bits hash-key, each
pointing at different sub-rules set. Fig. 1 depicts the proposed
hashing algorithm and the pre-processing phase. The 18-bits
hash key is extracted from the SA and DA fields (9-bits out
of 32 each) using IG criteria orMSB pattern, and the original
rule-set is partitioned into 256k smaller independent sub-
tables. In case an incoming packet matches more than one
rule the rule with the higher priority is applied. Therefore,
for efficient linear search, the rules list in each sub-table is
organized in descending priority order.

80614 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

FIGURE 2. The packet classification phase.

E. CLASSIFICATION PHASE
The classification phase is carried out in real-time and should
face the wire speed requirements. The same hash key, used for
partitioning the original rules-set and constructing the hash
tables, is also used by the classifier. This minimizes the clas-
sifier searches to the relevant sub ruleset for which the incom-
ing packet belongs to. Fig. 2 demonstrates the classification
phase for the entropy-based hashing. First, the same 18-bits
representing the maximum IG are selected from the two
32-bits IP address fields of the incoming packet header. The
selected key points to a specific entry in the hash table.
Then, a 64-bits pointer, stored in the specified entry, points
to the address of one of the 256k sub-tables, which con-
tains a sub-list of possible matching rules. Finally, a simple
linear search is applied to the selected sub-table. Since the
rules are organized in descending priority order, only the
first rule which matches the incoming packet is considered
(i.e., the matching rule with the highest priority), and the
packet is classified and assigned the appropriate flow and
action accordingly. In case no match is found, a NULL is
returned to define a default action for the incoming package.
Figure 2 presents the classification process and possible rules
distribution.

III. PARALLEL IMPLEMENTATION USING GPU
A. GPU ARCHITECTURE
This section reviews the architecture and the programming
model of the NVIDIA GTX-1080 GPU [40], [41]. The main
challenge is is to efficiently utilize the GPU parallelization
ability for the specific packet classification problem. GPUs
have been designed to support data-parallelization applica-
tions, for which many scalar processing units can process
different parts of the data, in parallel. This process is car-
ried out using thousands of threads in parallel, where all
threads execute the same kernel program. A set of con-
currently executing threads is called a thread block, and
at run-time, each block is assigned to a specific Streaming
Multiprocessor (SM), each contains multiple Stream Proces-
sors (SPs). Threads that belong to the same block share a
fast-local memory and a large set of registers within each
SM. The SM splits the blocks into warps which consist of
a fixed number of threads and is the basic execution unit
on GPU. Following, the Single Instruction Multiple Threads
(SIMT) parallel programming model, all the SPs execute

FIGURE 3. A simplified architecture of a single SM.

the same instruction in lockstep for a warp (typically a set
of 32 threads). A warp scheduler is responsible for selecting
some independent warps at a time and issues one instruction
for each warp. A global DDR memory is typically used for
copying the data from and to the host CPUmemory. The GPU
programming model efficiency fits the given packet classifi-
cation problem, for which each incoming packet is examined
for a match against multiple classification rules in parallel.
Figure 3 shows a simplified architecture scheme of a single
SM of the NVIDIA GTX 1080 GPU [40], [41]. The selected
GPU consists of 20 SMs, each containing 128 SPs running
at 1607MHz. The on-chip memory contains: 256kB register
file, 48kB L1 cache, and 96kB shared memory unit. The
off-chip memory includes 8GB device memory and 2048kB
L2 cache which is shared among all SMs. Registers which
are allocated to a specific thread cannot be shared with other
threads. The SM quad warp scheduler allows up to four warps
to be executed concurrently. The two dispatch units enable
dispatching of two independent instructions per warp in each
cycle and thus hiding latency. The GTX-1080 supports up
to 32 blocks, 64 warps and 2048 threads per SM. Therefore,
a maximum of 40960 threads can be executed concurrently.
The chosen GTX-1080 GPU is one of the commonly used
NVIDIA graphic processors. The proposed approach can
be implemented on any other GPU platform provided that
its global memory is large enough to contain the rule-sets
including replication. A selection of a specific GPU may
affect the performance (due to different clock frequency,
cache and memory sizes, no. of SMs, no. of warps, number of
threads, etc.). For a fair comparison with other related work,
the proposed approach has been implemented also on the
GTX-580.

Two common metrics are considered to evaluate GPU
utilization: Occupancy and Load efficiency [22], [41]. Occu-
pancy relates to the number of active wraps running con-
currently, while Load Efficiency expresses the amount of
coalesced memory accesses (addressing the same cache line).

The following factors limit the number of blocks which
can execute concurrently per SM. The number of warps
and the number of blocks per SM, as well as the local
resources (registers and sharedmemory) per SM. The number
of active warps should be equal to the maximum supported
active warps, to achieve 100% occupancy. Therefore, for the

VOLUME 8, 2020 80615



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

target GTX1080 GPU platform, which supports a maximum
of 64 active warps per SM and 32 active blocks, we have
assigned 64 threads per block (twowarps per block), resulting
in actually 64 active warps. Each SM can support up to
32 thread blocks (resulting in a maximum of 640 blocks per
kernel), and each block consists of 64 threads, and is responsi-
ble for classifying a packet against 64 rules, i.e., assigning one
thread per rule. The occupancy can be increased by increasing
the block size, i.e., increasing the number of warps per block.
Since each SM has a set of registers and a fixed amount
of shared memory shared by all active threads, reducing the
number of registers and memory needed per thread can also
increase occupancy. Following the above guideline, we have
tried to maintain as many active warps and threads as possible
throughout the execution of the kernel, while also having
a more balanced workload among the warps in each block.
A careful analysis has been done to keep the local resource
usage low enough to support multiple active thread blocks
per SM.

The Load efficiency measures the amount of coalesced
memory accesses and is defined as the ratio between the
number of requested bytes and the total number of actually
fetched bytes. To minimize DDR bandwidth, the GPU should
access global memory using as few transactions as possi-
ble. Therefore, a special effort has been made to minimize
the number of transfers to/from the CPU using one large
transfer rather than many small ones. Load efficiency can
be increased by accessing consecutive memory blocks while
fetching data from the device memory into L1 cache, shared
memory, and registers. While the input packets are copied to
the shared memory, the partial set of rules is copied directly
to the registers of the specific thread. Therefore, all match
comparisons are carried out using a low latency memory.
Although CUDA kernels are executed using a large number
of blocks, the required resources per-block should be limited
to allow more blocks to run in parallel [41].

B. PARALLEL IMPLEMENTATION OF THE PROPOSED
ALGORITHM
This section introduces the parallel implementation of the
proposed packet classification algorithm exploiting the GPU
GTX-1080 parallelism. An iterative algorithm for parallel
packet classification using two levels of parallelism is sug-
gested. In each iteration, an incoming packet is matched
against 64 different rules in parallel by assigning 64 threads
per block (per SM). Moreover, up to 20 different packets
are classified in parallel utilizing the total available SMs.
Each thread is responsible for examining the incoming header
packet (5 tuples) against one rule at a time and performs
nine basic comparison operations (two range comparisons
for each of the SA, DA, SP, DP fields, and one exact match
for the Protocol field). At the end of each iteration, each
thread produces a local rule match decision. In the case of
more than one rule match, the action related to the rule with
the higher priority is carried out. Otherwise, in case of no
match, the 64 threads are re-assigned to examine an additional

batch of 64 rules. This process continues until all the rules in
the specific sub-table are examined. For a sub-rule-set of Ns
rules, each thread is responsible for examining the incoming
packet against a maximum of Ns/64 rules. A default action
(i.e., ignore or denied) is defined in case no match is found.

Since each SM can handle a different incoming packet
simultaneously, the proposed algorithm allows the examina-
tion of up to 20 incoming packets in parallel, comparing each
packet header against 64 rules. This means that 1280 (64×20)
rules are examined in a basic time unit. This approach has
a significant advantage in cases concurrent classification of
multiple packet streams is required. Also, since each incom-
ing packet is processed by a specific SM, that is responsible
for checking the packet against the whole rule-set, there is no
need for sharing intermediate classification results between
SMs through the global memory. Moreover, since there is
no need for synchronization between SMs, as soon as a spe-
cific SM completes a packet classification, it is immediately
assigned with a new packet.

An alternative parallelism approach suggests partitioning
the rule-set among the available SMs (or thread blocks),
such that each SM is responsible for checking a batch of
incoming packets only against part of the rule-set [22]. This
means that classifying a packet against all the rules requires
passing each packet among all SMs. Varvello et al. [22] sug-
gest concurrently matching of a given rule against 64 pack-
ets using 64 threads. This approach requires an additional
final classification phase for merging all intermediate results
obtained for the partial rule-set in each SM. This alternative
is not appropriate for large rule-sets where repeated rule
partitioning among the SMs is required. Moreover, Varvello’s
approach results in a more complex merging decision and
needs several kernels activations to complete the classifi-
cation for each packet. The performances of our proposed
approach and Varvello’s approach seem to be similar for
the worst-case scenario. However, our proposed approach
promises faster classification since it utilizes the fact that the
rule-set is pre-ordered by priority. Therefore the classification
process can be terminated as soon as a match is found.

Let’s assume a priority-ordered rule-set with NR rules and
define the time unit required for matching one packet against
a given rule as tb. The time required for matching NP packets
against a sub-table that contains NS rules utilizing 20 SMs is
given by:

T = (NP/20) · dNS/64e · tb (6)

The proposed algorithm suggests distributing the rule-set into
256k sub-tables (for 18-bits hash key), while the matching
process is based on batches of 64 rules (utilizing 2 warps in
each SM). The sub-table containing the maximum number
of rules defines the number of batches needed to complete
the classification and therefore determines the worst-case
scenario. For example, the largest sub-table for a rule-set
of 100k contains up to 160 rules, and therefore up to
three batches, dNS/64e = 3, are needed in the worst
case. Hence, the time required to classify a single packet,

80616 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

assuming a 1607MHz clock, is 16.8ns (9 ALU operations ×
0.622ns × 3). Therefore, the proposed algorithm can easily
face awire speed up of 10Gbps for which the incoming packet
inter-arrival time (in the worst case for 64 bytes packets)
is about 51.2 nanoseconds. Exploiting the GPU parallelism
utilizing all 20 SMs, the time required to classify 1M packets
is 840µs (50k packets per SM × 16.8ns). The total kernel
time should also consider the extraction of the hash key and
the memory accesses required for fetching the rules into the
register file of each thread.

The proposed hashing approach guarantees that all the
rules associated with a specific packet are placed in the
same sub-table. Each SM executes an instance of the same
GPU kernel and is responsible for matching a packet against
64 different rules concurrently. The classification is carried
out iteratively by fetching batches of 64 rules from a specific
sub-table until a match is found. All 64 threads carry out the
same basic operation, i.e., nine compare operations checking
one rule per thread. In case the packet matches more than
one rule, the action associated with the highest priority rule
is applied. A packet header contains 13 relevant bytes (using
five-tuple), while a typical rule may contain up to 29 bytes
(two range bounds for each IP addresses and ports, protocol,
action type (accept or deny) and priority field (32 bits).
A zero padding is applied to each rule data structure allowing
memory data alignment purpose.

The following input variables are used by the kernel: (a) an
an array P which includes the input packets (5-tuples fields
for each packet), (b) an arrayR that contains the rules subsets
organized in an ordered priority, and (c) anOffset array which
contains pointers to the different sub-tables. The hash keys are
derived from the 5-tuples and stored in a dedicated array K.
The packets array P and rules array R resides in the GPU
device global memory. To maximize parallelism, the packets
array P is partitioned among several blocks, such that each
block is responsible for checking one packet against its corre-
sponding rules sub-tables. A pool of 100k packets is defined
by setting the number of blocks to 100k, while the size of
each block is set to 64 threads to allow matching of a packet
against 64 rules in parallel. The inspected packets are fetched
from the global memory to the specific SM shared memory,
while the associated rules are copied from the global memory
to the SM thread registers in batches of 64 rules. Each thread
is responsible for inspecting one packet against a given rule
performing nine compare operations. The matching results
are temporarily stored in the SM shared memory. Whenever
amatch is found, the current thread block is terminated and its
resources are assigned to another thread block start working
on a new packet.

A further improvement is achieved by accelerating the
nine comparison operations, required for testing a rule match,
by using additional parallelism level. Instead of allocating one
thread per rule and allowing parallel inspection of 64 rules,
we have assigned eight threads per rule, thus allowing test-
ing only 8 rules simultaneously. This approach efficiently
exploits the available resources of 64 threads per SM in all

the cases for which the size of the sub-table is not a multiple
of 64.

Inspecting a packet against up to 64 rules, while the
given resources are 64 threads, can be carried out using
two approaches: (a) allocating one threads per rule allowing
testing up to 64 rules simultaneously in t seconds (b) allo-
cating eights threads per rule allowing testing up to 8 rules
in t/8 seconds. The disadvantage of the first approach is
that it requires the same time (t sec) for processing a single
rule or up to 64 rules. Therefore, in case the batch size is
less than 64, the second approach is preferable. For example,
testing 32 rules takes t sec using the first approach and only
4 t/8 sec using the second approach. The required processing
time is given in Eq. (7) below.

T =
⌈ r
8

⌉
·
t
8

(7)

The pseudo-code for the proposed linear search kernel algo-
rithm is depicted in Algorithm.1. In the initialization phase,
the shared memory is allocated to store the following vari-
ables: the packet under test, the hash key, and the matching
results. Lines 3-6 copy the inspected packet fields from the
global to the shared memory. Lines 8-12 extract the hash key
and calculate the sub-table size. Lines 17-27 scan a batch of
rules and perform nine compares per rule (line 19). Finally,
in line 30, the index of the matched rule (one rule per packet)
is stored in the global memory.

IV. EXPERIMENTS AND RESULTS
This section presents various simulations of the proposed
algorithm using different sizes of rule-sets and different
hash keys. The rules-sets are derived for two widely used
applications, ACL and FW, using the common ClassBench
toolset. For each type of application, different rule-sets are
extracted, ranging from 10k up to 500k rules. The packet
traces are synthesized from appropriate rule-base generating
two million packets for testing the algorithm performance.
The classification results are demonstrated for both CPU and
GPU platforms, using 3.5GHz Intel Xeon E5-1620 v4 CPU
with 32GB DDR3, and NVIDIA GTX 1080 GPU with
8GB GDDR5X [40]. The performance evaluation of the
proposed algorithm is measured using two criteria: aver-
age/worst memory accesses and classification time. Since a
linear search is carried out to find a match against the rules
list in a sub-table, the algorithm complexity linearly depends
on the number of rules in the tested sub-table. The number
of memory accesses required for matching a given packet
is proportional to the number of rules in the appropriate
sub-table. Therefore, the longest sub-table determines the
worst-case scenario. Moreover, in the case of a burst of pack-
ets belonging to the same flow, the performance of the linear
search algorithm may significantly decrease. Especially if
the matching rule is located at the end of a large sub-table
and repeatedly addressed by a long burst of packets. The
classification performance is given in terms of throughput
(number of packets per second). Performance comparison

VOLUME 8, 2020 80617



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

Algorithm 1 Parallel Linear Search Algorithm
Inputs: An array of all rules R //Global

Array of packets P //Global
Hash key mask Kmask //Shared
Offsets array (pointers to sub-tables) Optr //Global

Outputs: Array of match results ARes //one entry per packet

Initialization:
The number of threads is assigned to 64 (blockDim← 64)
CUDA assigns a block of 64 threads to each packet
Allocate shared memory for: packet’s fields -Pfield , hash key -
Khash, size of the rules sub-table - STsize, match results vector -
RES[64], and a common match flag -Blockmatch

1: Tid ← threadIdx
2: Packetidx ← blockIdx × Packetsize //Packetsize = 20 bytes

// Threads 0-4 manage copying the packet to shared mem.
3: if Tid < 5 then //5 tuples
4: field_offset ← Tid × 4 // 4 bytes for each field
5: Pfield [field_offset]← P[Packetidx + field_offset]
6: end if
7: syncthreads()

// Thread 0 extracts the hash key
8: if Tid = 0 then
9: Khash ← keyExtract(Pfield ,Kmask ) //extract the hash key
10: SToffset ← Optr [Khash] //sub-table offset
11: STsize ← Optr [Khash + 1]− SToffset // calculate sub-table

size
12: end if
13: syncthreads()

// Parallel linear search
14: Blocksize ← 64
15: Blockoffset ← 0
16: Blockmatch ← False
17: while (Blockoffset + Tid < STsize) ∧ (Blockmatch = False) do
18: Thread_Rule← R[SToffset + Blockoffset + Tid]

// Copy rules from global memory to register file
19: match_flag← match(Pfield ,Thread_Rule)
20: RES[Tid]← match_flag // update the matched rule index
21: syncthreads()
22: scan RES for highest priority matched rule //parallel reduce
23: store the index of the highest prioritymatched rule inRES[0]
24: update the Blockmatch // true if match
25: syncthreads()
26: Blockoffset ← Blockoffset + Blocksize // block size is 64
27: end while
28: syncthreads()
29: if (Tid = 0) ∧ (Blockmatch = True) then
30: ARes[blockIdx]← RES[0] //one matched rule per packet
31: end if

against previous works shows the superiority of the proposed
algorithm in terms of both classification speed and memory
utilization.

A. RULE-BASE DESCRIPTION
The rule-bases are generated using real rule-set [37], a pub-
licly available tool for benchmarking packet classifica-
tion algorithms. The ClassBench tool uses various kernels
representing common internet and transport protocols such as
TCP,UDP, and ICMP.We use two of theClassBench rules set:
Access control list (ACL) and Firewall (FW). For each appli-
cation (ACL and FW), various sets of rules are generated:

FIGURE 4. ACL rules distribution (max values).

10k, 100k, 200k, 300k, 400k, and 500k, with appropriate
two million packets for each rule-set. The packet sets are
correlated to the rule-sets and generated such that (a) the
packets are different, and (b) each rule matches the same
number of packets. The proposed algorithm uses hashing
and enables partitioning a very large rules-set into smaller
distributed sub-rules look-up tables based on IG and MSB
pattern hash keys. For the 18-bit hash key, the rules are dis-
tributed among 256k different sub-tables with no more than
about 170 and 750 rules in each table for the 100k and 500k
rule-set, respectively. Since the rules may contain several
wild-cards, they should be accordingly duplicated among the
256k sub-tables. Therefore, the total rules-list is significantly
expended and can reach up to about 15 million rules for a
100k rule-set.

B. CPU RESULTS
This section presents the results of the proposed classification
algorithm using the Intel Xeon CPU implementation. The
results for both ACL and FW applications are presented using
MSB and IG entropy hashing with 16 and 18 bits key length.
Fig. 4 depicts the rule-sets distribution among the different
sub-tables using the two hash key types with 18- and 16-bits
key length for ACL. Both average and maximum sub-table
sizes are presented for different sizes of rule-sets ranging
from 10k up to 500k.

The MSB key typically contains less wildcards than the
entropy key, and therefore, the size of the expanded rule-set
for IG is up to 10 times greater comparing to MSB. Hence,
the average sub-table size for MSB (6 rules for 100k) is
also much lower than the IG (70 rules for 100k). However,
the maximum sub-table size for MSB (∼ 600 rules for 400k)
is much larger comparing to IG (∼ 150 rules for 400k). The
use of 18-bits key is preferable since the size of the sub-tables
is lower both for the average and maximum cases.

Fig. 5 and Fig. 6 demonstrate the throughput, and the
average memory accesses for ACL. The IG is superior to the
MSB key since the entropy-based key requires on average
much fewer memory accesses, for rule-set sizes of 100k and
more (11 vs. 264 accesses for 500k using 18-bits). The IG
with 18-bits key demonstrates the best performance in terms
of throughput and memory accesses for large rule-sets. For
100k rules, a throughput of 4 Mpps is achieved using entropy
while the MSB demonstrates only 2 Mpps.

80618 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

FIGURE 5. CPU ACL throughput.

FIGURE 6. ACL average memory accesses.

FIGURE 7. FW rules distribution (max values).

FIGURE 8. CPU FW throughput.

Fig. 7 depicts the rule-sets distribution for FW. The 18-bits
key is preferable since the average sub-table size is lower
(about half the size of 16-bits for large rule-sets), and there-
fore the linear search time is twice faster.

Fig. 8 and Fig. 9 show the throughput and average mem-
ory accesses for FW. Both hash keys demonstrate similar
performance in terms of throughput and are inferior to ACL
(for example, 1.2 Mpps vs. 4 Mpps for IG with 100k rules).
Fig. 9 shows the average memory accesses. The 18-bit key
requires much less memory accesses (eg. 54 vs. 106 memory
accesses for 100k rules, using entropy). We conclude that the
entropy-based key is a better choice for ACL and promises
higher throughput compared to MSB. However, the through-
put using entropy decrease from 5.3Mpps for 10k down to
2.1Mpps for 500k rules.

FIGURE 9. FW average memory accesses.

FIGURE 10. ACL pre-processing time.

FIGURE 11. FW pre-processing time.

Fig. 10 and Fig. 11 depict the required pre-processing
time for the MSB and IG as a function of the rule-sets
sizes for ACL and FW. As expected, the time required for
distributing the extended rules-list among the sub-tables for
the entropy-based key is up to 10 times higher compared to
MSB for ACL, and up to twice for FW.

C. GPU RESULTS
This section presents the results of the proposed classifica-
tion algorithm carried out on the GPU platform. Results for
both ACL and FW applications are presented using MSB
and Entropy hashing with 18 bits key length. The speedup
achieved by the parallel GPU implementation is demon-
strated compared to the CPU. The time needed for extracting
the hashing key is negligible compared to the classification
processing time and does not affect the measured thought.
The GPU throughput is mainly affected by the number of
rules in a sub-table and the number of threads assigned
to a block (SM), which defines the processing batch size.
The time needed to complete the linear search depends on
the number of batches needed until a match decision can
be taken.

Figure 12 shows the throughput in terms of Gbps for both
ACL and FW (for 18-bits hash keys). The OC-192 standard,

VOLUME 8, 2020 80619



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

FIGURE 12. GPU throughput for ACL and FW.

demonstrating a wire-speed of 10 Gbps, is chosen as a
reference throughput (horizontal dashed line), for which
64-bytes packet length is considered as the worst-case
scenario.

The IG outperforms the MSB demonstrating throughput
of 82Gbps compared to 18Gbps for ACL with 500k rules.
This result is expected due to the larger size of the sub-tables
for the MSB key. For both keys, the target of 10Gbps
wire-speed is achieved. Although the size of the sub-tables
are similar for both keys in the case of FW, the IG still
outperforms theMSB, demonstrating a throughput of 52Gbps
compared to 16 Gbps with 500k rules. This can be explained
since for IG most of the linear searches are completed within
the first batch.

Fig. 12 depicts a significant speed-up achieved by the GPU
compared to a single-core CPU for both ACL and FW. For
ACL, a speed-up of up to 90 and 80 is demonstrated for MSB
and IG, correspondingly. For FW a speed-up of up to 70 and
200 is demonstrated for MSB and IG, correspondingly. This
indicates the effective implementation of the proposed algo-
rithm exploiting the parallel capabilities of the GPU platform,
utilizing the full occupancy of the GPU warps and efficient
memory utilization.

D. COMPARISON WITH RELATED WORK
This section compares the performance of the proposed
approach with similar previously published works. First,
we evaluate the proposed one-level IG entropy-based hash-
ing approach, compared to the two-level hashing scalable
algorithm presented by Choi et al. [16]. Then, the pro-
posed GPU-based implementation is compared to both
Varvello et al. [22] and Zhou et al. [34], in terms of through-
put and the number of memory access.

1) CPU-BASED CLASSIFICATION COMPARISON
For a fair comparison with the work done by Choi et al. [16]
we have fully implemented the scalable algorithm presented
in [16], using the same rules-sets and the same CPU platform
for performance evaluation. Both algorithms have been tested
using a 3.5GHz Intel Xeon CPU, with various rules-sets of
sizes of 5k, 10k, and 100k derived from the ClassBench.
Our proposed algorithm outperforms the packet classification
presented in [16] in terms of both memory consumption and
throughput.

FIGURE 13. Average memory accesses.

FIGURE 14. FW rule-set distribution.

The proposed IG-based one-level hashing approach sug-
gests much better memory utilization. While [16] presents
two-level hashing (first level hashing based on port and pro-
tocol fields, and then a second level hashing based on IP)
we suggest a one-level hashing approach using mutual infor-
mation gain (IG) instead of the maximum entropy proposed
by [16].

According to [16], memory consumption of 32GB is
required for the two-level hashing data structure, not includ-
ing the expanded rule-list. For 500k rules-set, the number of
the extended rules is about 200M rules, requiring an addi-
tional 6.4GB memory space (32 bytes per rule). This large
memory requirement is not acceptable for real-time imple-
mentation using a commercial GPU with a typical memory
size of 8-12GB. Using one-level hashing with 18-bits IG
entropy-based hash key requires a total of 2MB for the main
hash table (which contains pointers to sub-tables). For 100k
the expanded FW rules-list contains ∼32M rules, and there-
fore a total memory size of ∼256MB is needed.

Fig. 13 shows the average memory accesses for the two
algorithms, for the FW scenario. For a fair comparison,
we choose the hash key demonstrating the best performance
in [16], i.e., the maximum entropy pattern. The scalable algo-
rithm demonstrates much more memory accesses on average
(a factor of about 2-3), for all rule-sets, compared to our algo-
rithm. Therefore, the proposed IG entropy-based algorithm
outperforms the scalable algorithm in terms of classification
runtime. Fig. 14 depicts the FW rules-set distribution among
the various sub-tables for the two algorithms. The maximum
sub-table size for the 100k rules-list is slightly lower for the
proposed IG algorithm compared to the scalable algorithm
(168 vs. 191 rules). Therefore it demonstrates better perfor-
mance also for the worst-case linear search scenario.

To extend the CPU-based comparison we compare the
performance of the proposed approach also with the serial
implementation of the multilayer approach presented in [22].

80620 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

FIGURE 15. CPU throughput comparison (realistic rules).

The performance evaluation is carried out for both ACL
and FW applications using the same CPU platform. Fig. 15
depicts the throughput of the IG proposed algorithm (for
a single-thread CPU), and the multilayer algorithm (for
single-thread and 8-threads) for a realistic scenario using
real rule-sets as described in [22]. The results of our IG
entropy-based hashing algorithm, are compared against the
multilayer tuple search for ACL and FW (with 2k and 1k
rules, correspondingly). The proposed algorithm outperforms
the multilayer single thread demonstrating 2.8 and 2.1 Gbps,
comparing to 1 and 0.5 Gbps, for ACL and FW, respectively.

The reasons for the difference in throughput can be
explained since the proposed entropy-based key requires,
on average, much fewer memory accesses. This is also the
reason for the higher throughput achieved for ACL compared
to FW in both approaches. Moreover, although the proposed
algorithm is carried out using a single thread CPU, it demon-
strates similar throughput (2.13 Gbps) compared to the
multi-thread implementation (2.2 Gbps) for FW. A speedup
factor of about four is achieved while using an 8-threads
CPU compared to a single thread [22]. Therefore, considering
this speedup factor, also for ACL, our IG algorithm has the
potential to outperform the multilayer 8-threads.

2) GPU-BASED CLASSIFICATION COMPARISON
This section compares the GPU-based implementation of
the proposed approach against the multilayer classification
algorithm and the parallelism approach presented by [22].
Varvello et al. suggest partitioning the rule-set among the
available SMs, such that each SM is responsible for checking
a batch of incoming packets only against part of the rule-set.
This approach requires an additional final classification phase
for merging the initial intermediate results achieved for the
partial rule-set in each SM. Moreover, this approach is not
appropriate for a large rule-set where repeated iterative rule
partitioning among the SMs is required. This leads to more
complex merging decisions and multiple kernels activations
to complete the classification of each packet.

We propose an alternative parallelism approach suggesting
that each SM is responsible for classifying a packet against
the whole rules-set (64 rules in parallel). Therefore, elimi-
nating the need for sharing intermediate classification results
between the SMs through the global memory. Although in
the worst-case the performances of both methods are similar,
our approach promises faster classification. We utilize the

FIGURE 16. GPU throughput comparison (realistic rules).

FIGURE 17. GPU throughput comparison using realistic rule-sets
(proposed alg.) and synthetic rule-sets for the others.

fact that the rules-set is preordered by priority, and therefore
the classification process is terminated as soon as a match is
found in one of the active SMs. For a fair comparison with the
work done in [22] the same GPU platform, the GTX 580, has
been used for evaluating the proposed IG algorithm. Fig. 16
depicts the GPU throughput for the proposed IG algorithm
and three other GPU-based algorithms presented in [22]:
Bloom Search, Tuple Search, and Linear Search. The results
are given for the realistic scenario described in [22] using
real rule-sets derived from the ClassBench tool (with 2k and
1k rules for ACL and FW respectively), for minimum-sized
64-byte packets. The proposed IG algorithm outperforms the
other three algorithms for FW, demonstrating a throughput
of 37.8 Gbps compared to 22.5 Gbps for the Bloom Fil-
ter. For ACL, similar throughputs are demonstrated except
for the linear search. The GPU proposed implementation
demonstrates similar results for both ACL and FW since both
applications are characterized by similar rules’ distribution
for small rule-sets (up to 10k). However, Varvello et al. [22]
demonstrate a higher throughput for ACL compared to FW.
This can be explained by the different number of classes for
these applications. While ACL rules are partitioned into only
80 classes, the FW rules result in 221 classes [22].

The comparison is extended for larger rule-sets of up to
256k rules. While the evaluation conducted in [22] uses
synthetic rule-sets with sizes of 1k, 4k, 8k, 128k, and 256k,
the proposed IG algorithm is evaluated using real rule-sets
derived from ClassBench with 1k, 4k, 10k, 200k and 300k
rule-sets, correspondingly. Fig. 17 shows the throughput
achieved for ACL by the proposed algorithm and by the three
GPU-based algorithms presented in [22]. The superior results
of [22] for small rule-sets are probably achieved due to the use
of synthetic rule set, while the results for the proposedmethod
are shown for realistic rules. Moreover, for large rule-sets,
the throughput presented in [22] is dramatically decreased

VOLUME 8, 2020 80621



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

due to a large number of required classes. Our proposed
approach is scalable demonstrating high throughput also for
large rule-sets since the matching of each incoming packet
is carried out simultaneously against multiple rules (64 rules
per SM).

Although, for small rule-sets (up to 10k rules) both the
Bloom and Tuple algorithms show better performance, our
proposed algorithm demostrates significant higher through-
put for large rule-sets. For e.g., a throughput of 32.1 and
26.8 Gbps is achieved compared to 8.9 and 4.5 Gbps for
the Bloom Search, for 200k and 300k rules, respectively.
The improved throughput achieved by the proposed approach
should be even higher considering the complexity of the
ClassBench real rule-sets compared to the synthetic rules
used in [22]. This can be confirmed by analyzing the results
demonstrated in [22], for which, the throughput of 69 Gbps
achieved with a synthetic rule-set drops to 39.8 Gbps while
using the ClassBench rule-sets for the same number of rules
(2k rules for ACL).

Finally, the proposed algorithm is also compared
to the GPU-based packet classification presented by
Zhou et al. [34] implementing a range-tree search in GPU.
Although this algorithm scales well for a limited range of
rules-set sizes (from 512 to 4k rules), the throughput dra-
matically drops as the rule-set increases [34]. Our proposed
IG algorithm outperforms Zhou’s algorithm, demonstrating
31.8 Gbps compared to 22.6 Gbps for the 4k synthetic rule-
set, although they used a faster GPU (Tesla K20) platform.

V. CONCLUSION
This research presents a novel efficient parallel algorithm
for packet classification supporting very large rule-sets. The
proposed algorithm uses a one-level hashing data structure
to enable partitioning a large rules-set into smaller uni-
formly distributed sub-rules look-up tables. The classification
algorithm is based on entropy hashing using Information
Gain (IG), andMost Significant Bit (MSB) pattern hash keys.
This approach minimizes the classifier searches only to the
relevant, appropriate look-up table, and therefore, the classi-
fication process is significantly shortened.

A further speed-up factor is achieved by parallelizing the
classification algorithm using a Graphics Processing Unit
(GPU). The parallel implementation efficiently utilizes the
multithreaded architecture of the GPU, allowing matching
an incoming packet simultaneously against multiple rules
(64 rules per each SM), and handling many packets in par-
allel (a packet per SM block). Moreover, using the IG-based
hashing key combined with the proposed one-level hashing
dramatically decreases the memory consumption. Simula-
tion results show that the proposed algorithm outperforms
existing classifiers in terms of both speed up and memory
utilization. A significant classification speed up, of about 200,
is achieved by using the GPU architecture compared to other
serial implementations.

The proposed GPU-based implementation is memory effi-
cient and demonstrates high throughput with regard to the

common wire-speed of OC-192 (10 Gbps). The performance
of the proposed algorithm is examined using two common
data communication applications: Access Control List (ACL)
and Firewall (FW), using realistic rule sets generated by the
ClassBench toolset. A throughput of 80 Gbps and 50 Gbps
is achieved for ACL and FW applications, respectively, for
500k rule-sets. Unlike most published classification algo-
rithms, the proposed algorithm can handle very large realistic
rule-sets (of up to 500k and more) in real-time, facing the
high throughput of today’s wire speed. To the best of our
knowledge, this is the first work facing such large and realistic
rule-sets.

The performance of the proposed algorithm is com-
pared against previous GPU-based packet classification
algorithms [22], [34]. This work presents an alternative
parallelism approach to the multilayer classification algo-
rithm presented by Varvello et al. by eliminating the need
for sharing intermediate classification results between the
SMs through the global memory. Our proposed algorithm
outperforms the three other GPU-based algorithms presented
in [22], demonstrating significant higher throughput for large
rule-sets. The superiority of the proposed algorithm has been
demonstrated also comparing to Zhou’s GPU-based algo-
rithm [34], demonstrating better throughput.

REFERENCES
[1] J. Yuan, Z. Li, and R. Yuan, ‘‘Information entropy based clustering method

for unsupervised Internet traffic classification,’’ in Proc. IEEE Int. Conf.
Commun., May 2008, pp. 1588–1592.

[2] D. E. Taylor, ‘‘Survey and taxonomy of packet classification techniques,’’
ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, Sep. 2005.

[3] M. Dixit, A. Kale, M. Narote, S. Talwalkar, and B. V. Barbadekar, ‘‘Fast
packet classification algorithms,’’ Int. J. Comput. Theory Eng., vol. 4, no. 6,
p. 1030, 2012.

[4] X.-A. Bi, Y. Zhou, and J. Yu, ‘‘Clustering boundary cutting for packet
classification based on distribution density,’’ in Proc. IEEE Int. Symp. Par-
allel Distrib. Process. Appl. IEEE Int. Conf. Ubiquitous Comput. Commun.
(ISPA/IUCC), Dec. 2017, pp. 661–666.

[5] W. Pak and Y.-J. Choi, ‘‘High performance and high scalable packet classi-
fication algorithm for network security systems,’’ IEEE Trans. Dependable
Secure Comput., vol. 14, no. 1, pp. 37–49, 2015.

[6] Y.-C. Cheng and P.-C. Wang, ‘‘Packet classification using dynami-
cally generated decision trees,’’ IEEE Trans. Comput., vol. 64, no. 2,
pp. 582–586, Feb. 2015.

[7] Y. R. Qu and V. K. Prasanna, ‘‘High-performance and dynamically updat-
able packet classification engine on FPGA,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 1, pp. 197–209, Jan. 2016.

[8] Y. Qu, S. Zhou, and V. K. Prasanna, ‘‘Scalable many-field packet classifi-
cation on multi-core processors,’’ in Proc. 25th Int. Symp. Comput. Archit.
High Perform. Comput., Oct. 2013, pp. 33–40.

[9] R. Leira, P. Gomez, I. Gonzalez, and J. E. L. de Vergara, ‘‘Multimedia
flow classification at 10 gbps using acceleration techniques on commodity
hardware,’’ in Proc. Int. Conf. Smart Commun. Netw. Technol. (SaCoNeT),
Jun. 2013, pp. 1–5.

[10] K. Lee and S. Yun, ‘‘Hybrid memory-efficient multimatch packet classifi-
cation for NIDS,’’Microprocessors Microsyst., vol. 39, no. 2, pp. 113–121,
Mar. 2015.

[11] M. Kekely, L. Kekely, and J. Kořenek, ‘‘General memory efficient packet
matching FPGA architecture for future high-speed networks,’’ Micropro-
cessors Microsyst., vol. 73, Mar. 2020, Art. no. 102950.

[12] D.-Y. Chang and P.-C. Wang, ‘‘TCAM-based multi-match packet classi-
fication using multidimensional rule layering,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 2, pp. 1125–1138, Apr. 2016.

80622 VOLUME 8, 2020



S. Greenberg et al.: Packet Classification Using GPU and One-Level Entropy-Based Hashing

[13] I. Syafalni, T. Sasao, X. Wen, S. Holst, and K. Miyase, ‘‘Soft-error tolerant
TCAMs for high-reliability packet classifications,’’ in Proc. IEEE Asia–
Pacific Conf. Circuits Syst. (APCCAS), Nov. 2014, pp. 471–474.

[14] A. X. Liu, C. R. Meiners, and E. Torng, ‘‘Packet classification using binary
content addressable memory,’’ IEEE/ACM Trans. Netw., vol. 24, no. 3,
pp. 1295–1307, Jun. 2016.

[15] X. Dong, M. Qian, and R. Jiang, ‘‘Packet classification based on the
decision tree with information entropy,’’ J. Supercomput., pp. 1–15,
Jan. 2018, doi: 10.1007/s11227-017-2227-z.

[16] L. Choi, H. Kim, S. Kim, and M. H. Kim, ‘‘Scalable packet classifica-
tion through rulebase partitioning using the maximum entropy hashing,’’
IEEE/ACM Trans. Netw., vol. 17, no. 6, pp. 1926–1935, Dec. 2009.

[17] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, ‘‘Chisel: A storage-
efficient, collision-free hash-based network processing architecture,’’ACM
SIGARCH Comput. Archit. News, vol. 34, pp. 203–215, May 2006.

[18] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi, and C. Yim, ‘‘Boundary cut-
ting for packet classification,’’ IEEE/ACM Trans. Netw., vol. 22, no. 2,
pp. 443–456, Apr. 2014.

[19] T. Ganegedara, W. Jiang, and V. K. Prasanna, ‘‘A scalable and modular
architecture for high-performance packet classification,’’ IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 5, pp. 1135–1144, May 2014.

[20] P. Gupta and N. McKeown, ‘‘Packet classification on multiple fields,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp. 147–160,
Oct. 1999.

[21] P.-C. Wang, ‘‘Scalable packet classification using a compound algorithm,’’
Int. J. Commun. Syst., vol. 23, nos. 6–7, pp. 841–860, 2010.

[22] M. Varvello, R. Laufer, F. Zhang, and T. V. Lakshman, ‘‘Multilayer packet
classification with graphics processing units,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2728–2741, Oct. 2016.

[23] V. Srinivasan, S. Suri, and G. Varghese, ‘‘Packet classification using tuple
space search,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 29, no. 4,
pp. 135–146, Oct. 1999.

[24] V. Srinivasan, ‘‘A packet classification and filter management system,’’ in
Proc. IEEE INFOCOM . Conf. Comput. Commun. 20th Annu. Joint Conf.
IEEE Comput. Commun. Soc., Apr. 2001, pp. 1464–1473.

[25] K. Zheng, Z. Liang, and Y. Ge, ‘‘Parallel packet classification via policy
table pre-partitioning,’’ in Proc. GLOBECOM IEEE Global Telecommun.
Conf., Dec. 2005, p. 6.

[26] P. Gupta and N. McKeown, ‘‘Algorithms for packet classification,’’ IEEE
Netw. Special Issue, vol. 15, no. 2, pp. 24–32, Mar. 2001.

[27] T. Y. C. Woo, ‘‘A modular approach to packet classification: Algo-
rithms and results,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun.
19th Annu. Joint Conf. IEEE Comput. Commun. Societies, Mar. 2000,
pp. 1213–1222.

[28] S. Singh, F. Baboescu, G. Varghese, and J. Wang, ‘‘Packet classification
using multidimensional cutting,’’ in Proc. Conf. Appl., Technol., Archit.,
Protocols Comput. Commun. SIGCOMM, 2003, pp. 213–224.

[29] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, ‘‘Fast and scalable
layer four switching,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 28,
no. 4, pp. 191–202, Oct. 1998.

[30] X. Sun, S. K. Sahni, and Y. Q. Zhao, ‘‘Packet classification consum-
ing small amount of memory,’’ IEEE/ACM Trans. Netw., vol. 13, no. 5,
pp. 1135–1145, Oct. 2005.

[31] A. X. Liu, C. R. Meiners, and E. Torng, ‘‘TCAM razor: A systematic
approach towards minimizing packet classifiers in TCAMs,’’ IEEE/ACM
Trans. Netw., vol. 18, no. 2, pp. 490–500, Apr. 2010.

[32] W. Jiang and V. K. Prasanna, ‘‘Scalable packet classification on FPGA,’’
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 9,
pp. 1668–1680, Sep. 2012.

[33] K. Kang and Y. S. Deng, ‘‘Scalable packet classification via GPUmetapro-
gramming,’’ in Proc. Design, Autom. Test Eur., Mar. 2011, pp. 1–4.

[34] S. Zhou, S. G. Singapura, and V. K. Prasanna, ‘‘High-performance packet
classification on GPU,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2014, pp. 1–6.

[35] B. Yang, X. Wang, Y. Xue, and J. Li, ‘‘DBS: A bit-level heuristic packet
classification algorithm for high speed network,’’ in Proc. 15th Int. Conf.
Parallel Distrib. Syst., Dec. 2009, pp. 260–267.

[36] R. Pagh and F. F. Rodler, ‘‘Cuckoo hashing,’’ J. Algorithms, vol. 51, no. 2,
pp. 122–144, 2004.

[37] D. E. Taylor and J. S. Turner, ‘‘ClassBench: A packet classification
benchmark,’’ IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511,
Jun. 2007.

[38] Y. Rekhter and T. Li, An Architecture for IP Address AllocationWith CIDR,
document IETF Internet draft RFC 1518, Sep. 1993. [Online]. Available:
http://www.isi.edu/in-notes/rfc1518.txt/

[39] J. R. Quinlan, ‘‘Induction of decision trees,’’ Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[40] GeForce GTX 1080 Whitepaper, NVIDIA, Santa Clara, CA, USA, 2016.
[41] Cuda C Programming Guide, NVIDIA, Santa Clara, CA, USA, 2014.

SHLOMO GREENBERG (Member, IEEE)
received the B.Sc., M.Sc. (Hons.), and Ph.D.
degrees in electrical and computer engineering
from the Ben-Gurion University of the Negev,
Beer-Sheva, Israel, in 1976, 1984, and 1997,
respectively. He is currently a Staff Member with
the Department of Electrical and Computer Engi-
neering, Ben-Gurion University of the Negev. His
primary research interests are computer architec-
ture, wireless communication, image, and digital

signal processing, computer vision, and VLSI low power design.

TOMER SHEPS received the B.Sc. degree from
the Sami-Shamoon College and the M.Sc. degree
from the Ben-Gurion University of the Negev,
Beer-Sheva, Israel, in 2013 and 2018, respectively,
both in electrical and computer engineering. His
primary research interests are computer architec-
ture, networking, wireless communication, digi-
tal signal processing, computer vision, and VLSI
design.

DAVID A. LEON received the B.Sc. degree
in communication systems engineering from the
Ben-Gurion University of the Negev, Beer-Sheva,
Israel, in 2017, where he is currently pursuing
the master’s degree with the School of Electrical
and Computer Engineering. His primary research
interests are parallel and concurrent programming,
computer architecture, and machine learning.

YEHUDA BEN-SHIMOL (Member, IEEE)
received the B.Sc., M.Sc. (Hons.), and Ph.D.
(Hons.) degrees in electrical and computer engi-
neering from the Ben-Gurion University of the
Negev, Israel. He is currently a Senior Lecturer
at the School of Electrical and Computer Engi-
neering, Ben-Gurion University of the Negev. His
main areas of interest are computer networks,
design and analysis, and performance evaluation
of communication protocols and networks.

VOLUME 8, 2020 80623

http://dx.doi.org/10.1007/s11227-017-2227-z

